File size: 1,704 Bytes
e519d0d
 
 
 
0552b34
e519d0d
 
 
 
 
 
 
 
 
 
 
 
0552b34
e519d0d
0552b34
e519d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
library_name: peft
tags:
- llama-factory
- lora
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.3
model-index:
- name: Mistral_AAID_mixed_train_final
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral_AAID_mixed_train_final

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co./mistralai/Mistral-7B-v0.3) on the AAID_mixed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5356

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8548        | 0.0109 | 10   | 0.5356          |
| 0.4005        | 0.0219 | 20   | 0.5795          |
| 0.3521        | 0.0328 | 30   | 0.5634          |
| 0.3565        | 0.0438 | 40   | 0.5676          |
| 0.3418        | 0.0547 | 50   | 0.5385          |
| 0.3298        | 0.0656 | 60   | 0.5532          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1