--- license: mit library_name: peft tags: - trl - reward-trainer - generated_from_trainer base_model: openai-community/gpt2-large metrics: - accuracy model-index: - name: RM-HH-AllMix_helpful_gpt3_loraR64_20000_gpt2-large_shuffleTrue_extractchosenFalse results: [] --- # RM-HH-AllMix_helpful_gpt3_loraR64_20000_gpt2-large_shuffleTrue_extractchosenFalse This model is a fine-tuned version of [openai-community/gpt2-large](https://huggingface.co./openai-community/gpt2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4894 - Accuracy: 0.7351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6628 | 0.04 | 250 | 0.6390 | 0.6277 | | 0.598 | 0.08 | 500 | 0.5673 | 0.6933 | | 0.5479 | 0.13 | 750 | 0.5415 | 0.7076 | | 0.5397 | 0.17 | 1000 | 0.5308 | 0.7110 | | 0.5094 | 0.21 | 1250 | 0.5261 | 0.7159 | | 0.5142 | 0.25 | 1500 | 0.5203 | 0.7193 | | 0.5414 | 0.29 | 1750 | 0.5161 | 0.7197 | | 0.5189 | 0.33 | 2000 | 0.5131 | 0.7189 | | 0.5151 | 0.38 | 2250 | 0.5100 | 0.7216 | | 0.4942 | 0.42 | 2500 | 0.5089 | 0.7208 | | 0.5067 | 0.46 | 2750 | 0.5057 | 0.7216 | | 0.5026 | 0.5 | 3000 | 0.5041 | 0.7238 | | 0.4926 | 0.54 | 3250 | 0.5038 | 0.7265 | | 0.4931 | 0.59 | 3500 | 0.5022 | 0.7310 | | 0.4946 | 0.63 | 3750 | 0.4993 | 0.7329 | | 0.5058 | 0.67 | 4000 | 0.4968 | 0.7313 | | 0.4822 | 0.71 | 4250 | 0.4963 | 0.7306 | | 0.4924 | 0.75 | 4500 | 0.4961 | 0.7329 | | 0.4654 | 0.8 | 4750 | 0.4959 | 0.7302 | | 0.4924 | 0.84 | 5000 | 0.4971 | 0.7310 | | 0.4674 | 0.88 | 5250 | 0.4948 | 0.7310 | | 0.4704 | 0.92 | 5500 | 0.4950 | 0.7336 | | 0.5089 | 0.96 | 5750 | 0.4905 | 0.7306 | | 0.4673 | 1.0 | 6000 | 0.4929 | 0.7313 | | 0.4594 | 1.05 | 6250 | 0.4932 | 0.7291 | | 0.479 | 1.09 | 6500 | 0.4919 | 0.7332 | | 0.5112 | 1.13 | 6750 | 0.4895 | 0.7355 | | 0.4794 | 1.17 | 7000 | 0.4888 | 0.7332 | | 0.5188 | 1.21 | 7250 | 0.4881 | 0.7340 | | 0.4541 | 1.26 | 7500 | 0.4892 | 0.7359 | | 0.4617 | 1.3 | 7750 | 0.4898 | 0.7366 | | 0.4747 | 1.34 | 8000 | 0.4898 | 0.7362 | | 0.4834 | 1.38 | 8250 | 0.4893 | 0.7389 | | 0.4954 | 1.42 | 8500 | 0.4875 | 0.7385 | | 0.5029 | 1.47 | 8750 | 0.4875 | 0.7385 | | 0.4742 | 1.51 | 9000 | 0.4872 | 0.7400 | | 0.4802 | 1.55 | 9250 | 0.4884 | 0.7393 | | 0.5009 | 1.59 | 9500 | 0.4877 | 0.7400 | | 0.4619 | 1.63 | 9750 | 0.4875 | 0.7396 | | 0.4433 | 1.67 | 10000 | 0.4902 | 0.7404 | | 0.4844 | 1.72 | 10250 | 0.4903 | 0.7400 | | 0.4337 | 1.76 | 10500 | 0.4917 | 0.7400 | | 0.4897 | 1.8 | 10750 | 0.4901 | 0.7396 | | 0.4783 | 1.84 | 11000 | 0.4894 | 0.7366 | | 0.4929 | 1.88 | 11250 | 0.4892 | 0.7359 | | 0.4776 | 1.93 | 11500 | 0.4891 | 0.7362 | | 0.4574 | 1.97 | 11750 | 0.4894 | 0.7351 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2