--- base_model: unsloth/llama-3-8b-bnb-4bit library_name: peft license: llama3 tags: - trl - sft - unsloth - generated_from_trainer model-index: - name: judicial-summarization-llama-3-finetuned_mildsum_FL results: [] --- # judicial-summarization-llama-3-finetuned_mildsum_FL This model is a fine-tuned version of [unsloth/llama-3-8b-bnb-4bit](https://huggingface.co./unsloth/llama-3-8b-bnb-4bit) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3073 | 0.9991 | 273 | 1.4746 | | 1.3533 | 1.9982 | 546 | 1.4690 | | 1.1871 | 2.9973 | 819 | 1.5012 | | 1.008 | 4.0 | 1093 | 1.5703 | | 0.8119 | 4.9991 | 1366 | 1.6773 | | 0.6565 | 5.9945 | 1638 | 1.7972 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1