File size: 1,801 Bytes
f29896d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- unsloth
- generated_from_trainer
model-index:
- name: judicial-summarization-Mistral-finetuned_mildsum_TR
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# judicial-summarization-Mistral-finetuned_mildsum_TR
This model is a fine-tuned version of [unsloth/mistral-7b-v0.3-bnb-4bit](https://huggingface.co./unsloth/mistral-7b-v0.3-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1717
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3063 | 1.0 | 273 | 1.4469 |
| 1.1546 | 2.0 | 546 | 1.4614 |
| 1.0607 | 3.0 | 819 | 1.5200 |
| 0.7531 | 4.0 | 1092 | 1.6634 |
| 0.5051 | 5.0 | 1365 | 1.8932 |
| 0.2262 | 6.0 | 1638 | 2.1717 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1 |