--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-JudicialSummarization-sci-textrank-FinetuneLlama3.18b results: [] --- # Llama-3.1-8B-Instruct-JudicialSummarization-sci-textrank-FinetuneLlama3.18b This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.2441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.312 | 0.7179 | 500 | 6.3024 | | 6.2191 | 1.4358 | 1000 | 6.2649 | | 6.2087 | 2.1536 | 1500 | 6.2514 | | 6.2002 | 2.8715 | 2000 | 6.2441 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1