--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama3 - trl - hinglish base_model: unsloth/llama-3-8b datasets: - cmu_hinglish_dog --- # Inference: ``` !pip install -q "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -q --no-deps "xformers<0.0.26" trl peft accelerate bitsandbytes ``` ```python from unsloth import FastLanguageModel import torch max_seq_length = 512 dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. model, tokenizer = FastLanguageModel.from_pretrained( model_name = "Hinglish-Project/llama-3-8b-English-to-Hinglish", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, ) ``` ```python def pipe(prompt): alpaca_prompt = """### Instrucion: Translate given text to Hinglish Text: ### Input: {} ### Response: """ inputs = tokenizer( [ alpaca_prompt.format(prompt), ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True) raw_text = tokenizer.batch_decode(outputs)[0] return raw_text.split("### Response:\n")[1].split("<|end_of_text|>")[0] ``` ```python text = "This is a fine-tuned Hinglish translation model using Llama 3." pipe(text) ## yeh ek fine-tuned Hinglish translation model hai jisme Llama 3 ka use kiya gaya hai. ``` # Uploaded model - **Developed by:** Hinglish-Project - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-8b-bnb-4bit This Llama3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)