--- language: - en license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: output results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.7060783174788182 --- # output This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.3123 - Matthews Correlation: 0.7061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.3546 | 1.0 | 535 | 0.3123 | 0.7061 | | 0.2078 | 2.0 | 1070 | 0.3618 | 0.7311 | | 0.1313 | 3.0 | 1605 | 0.5145 | 0.7160 | | 0.087 | 4.0 | 2140 | 0.5819 | 0.7230 | | 0.0597 | 5.0 | 2675 | 0.6325 | 0.7397 | | 0.0435 | 6.0 | 3210 | 0.6152 | 0.7332 | | 0.0268 | 7.0 | 3745 | 0.7296 | 0.7327 | | 0.0304 | 8.0 | 4280 | 0.7672 | 0.7287 | | 0.015 | 9.0 | 4815 | 0.8067 | 0.7264 | | 0.0133 | 10.0 | 5350 | 0.8079 | 0.7246 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0