# # Copyright (c) InternLM. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch InternLMXComposer2 model.""" import copy import queue import threading from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from PIL import Image from torch import nn from torch.nn import CrossEntropyLoss from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.utils import (add_start_docstrings_to_model_forward, replace_return_docstrings) try: from transformers.generation.streamers import BaseStreamer except: # noqa # pylint: disable=bare-except BaseStreamer = None from .build_mlp import build_vision_projector, build_vision_tower from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model, InternLM2PreTrainedModel) _CONFIG_FOR_DOC = 'InternLMXcomposer2Config' class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel): _auto_class = 'AutoModelForCausalLM' _tied_weights_keys = ['output.weight'] def __init__(self, config): super().__init__(config) self.model = InternLM2Model(config) self.vocab_size = config.vocab_size self.output = nn.Linear( config.hidden_size, config.vocab_size, bias=False) self.tokenizer = None self.max_length = config.max_length print(f'Set max length to {self.max_length}') # Initialize weights and apply final processing self.post_init() self.vit = build_vision_tower() self.vision_proj = build_vision_projector() self.vis_processor = transforms.Compose([ transforms.Resize((config.img_size, config.img_size), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, InternLM2Model): module.gradient_checkpointing = value if value: self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value def get_input_embeddings(self): return self.model.tok_embeddings def set_input_embeddings(self, value): self.model.tok_embeddings = value def get_output_embeddings(self): return self.output def set_output_embeddings(self, new_embeddings): self.output = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def encode_text(self, text, add_special_tokens=False): token = self.tokenizer( text, return_tensors='pt', add_special_tokens=add_special_tokens).input_ids.to(self.device) embs = self.model.tok_embeddings(token) return embs def encode_img(self, image): if image is None: return None if isinstance(image, str): image = Image.open(image).convert('RGB') image = self.vis_processor(image).unsqueeze(0).to(self.device) else: assert isinstance(image, torch.Tensor) img_embeds, atts_img, img_target = self.img2emb(image) return img_embeds def img2emb(self, image): img_embeds = self.vision_proj(self.vit(image.to(self.device))) atts_img = torch.ones( img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device) img_target = torch.ones( img_embeds.size()[:2], dtype=torch.long).to( img_embeds.device) * -100 return img_embeds, atts_img, img_target def prompt_wrap(self, img_embeds, prompt): batch_size = img_embeds.shape[0] p_before, p_after = prompt.split('') p_before_tokens = self.tokenizer( p_before, return_tensors='pt', add_special_tokens=True).to(img_embeds.device) p_before_embeds = self.model.tok_embeddings( p_before_tokens.input_ids).expand(batch_size, -1, -1) wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1) wrapped_atts_img = torch.ones( wrapped_img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device) wrapped_target = torch.ones( batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to( img_embeds.device) * -100 return wrapped_img_embeds, wrapped_atts_img, wrapped_target def text2emb(self, text, add_special=False): to_regress_tokens = self.tokenizer( text, return_tensors='pt', padding='longest', truncation=True, add_special_tokens=add_special).to(self.device) targets = self.mask_human_targets(to_regress_tokens.input_ids) targets = targets.to(self.device) return to_regress_tokens, targets def interleav_wrap_chat(self, tokenizer, query, image, history, meta_instruction): prompt = '' if meta_instruction: prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n""" for record in history: prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n""" prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n""" im_len = image.shape[1] image_nums = len(image) parts = prompt.split('') wrap_embeds, wrap_im_mask = [], [] temp_len = 0 for idx, part in enumerate(parts): if len(part) > 0: part_tokens = tokenizer(part, return_tensors='pt').to(self.device) part_embeds = self.model.tok_embeddings( part_tokens.input_ids) wrap_embeds.append(part_embeds) wrap_im_mask.append(torch.zeros(part_embeds.shape[:2])) temp_len += part_embeds.shape[1] if idx < image_nums: wrap_embeds.append(image[idx].unsqueeze(0)) wrap_im_mask.append(torch.ones(1, image[idx].shape[0])) temp_len += im_len if temp_len > self.max_length: break wrap_embeds = torch.cat(wrap_embeds, dim=1) wrap_im_mask = torch.cat(wrap_im_mask, dim=1) wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device) wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool() inputs = { 'inputs_embeds': wrap_embeds } return inputs, wrap_im_mask def interleav_wrap(self, img_list, text_list): wrap_embeds_list, wrap_atts_list = [], [] wrap_target_list, wrap_im_mask_list = [], [] for image, text in zip(img_list, text_list): img_embeds, atts_img, img_target = self.img2emb(image) text = text[0] parts = text.split('') wrap_tokens, wrap_embeds, wrap_atts, wrap_im_mask = [], [], [], [] temp_len = 0 image_nums, im_len = img_embeds.shape[:2] need_bos = True for idx, part in enumerate(parts): if len(part) > 0: part_tokens = self.tokenizer( part, return_tensors='pt', padding='longest', add_special_tokens=need_bos).to(self.device) if need_bos: need_bos = False wrap_tokens.append(part_tokens.input_ids) part_embeds = self.model.tok_embeddings( part_tokens.input_ids) wrap_embeds.append(part_embeds) wrap_atts.append(part_tokens.attention_mask) wrap_im_mask.append( torch.zeros(part_embeds.shape[:2]).to(self.device)) temp_len += part_embeds.shape[1] if idx < image_nums: wrap_tokens.append(img_target[idx].unsqueeze(0)) wrap_embeds.append(img_embeds[idx].unsqueeze(0)) wrap_atts.append(atts_img[idx].unsqueeze(0)) wrap_im_mask.append( torch.ones_like(atts_img[idx].unsqueeze(0))) temp_len += im_len if temp_len > self.max_length: break wrap_tokens = torch.cat(wrap_tokens, dim=1) wrap_embeds = torch.cat(wrap_embeds, dim=1) wrap_atts = torch.cat(wrap_atts, dim=1) wrap_im_mask = torch.cat(wrap_im_mask, dim=1) wrap_target = self.mask_human_targets(wrap_tokens).to(self.device) wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device) wrap_atts = wrap_atts[:, :self.max_length].to(self.device) wrap_target = wrap_target[:, :self.max_length].to(self.device) wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device) wrap_embeds_list.append(wrap_embeds) wrap_atts_list.append(wrap_atts) wrap_target_list.append(wrap_target) wrap_im_mask_list.append(wrap_im_mask) wrap_embeds = torch.cat(wrap_embeds_list) wrap_atts = torch.cat(wrap_atts_list) wrap_target = torch.cat(wrap_target_list) wrap_im_mask = torch.cat(wrap_im_mask_list) return wrap_embeds, wrap_atts, wrap_target, wrap_im_mask def mask_human_targets(self, input_ids, pure=False): target_batch = [] for bs in range(input_ids.shape[0]): ids = input_ids[bs] targets = copy.deepcopy(ids) end_count = 0 last_eoa = 0 for i, temp_id in enumerate(ids): if temp_id == 92542: if end_count % 2 == 0: targets[last_eoa:i + 6] = -100 else: last_eoa = i + 1 end_count += 1 # # eos and following pad elif temp_id == 2: # loss on eos, but not on pad targets[i + 1:] = -100 break # trunction, end at last question if temp_id != 2 and end_count % 2 == 0: # mask all after the last answer targets[last_eoa + 1:] = -100 target_batch.append(targets.unsqueeze(0)) target_batch = torch.cat(target_batch, dim=0) return target_batch @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward(self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ samples = kwargs.get('samples', None) if samples: if samples['data_type'][0] == 'text': has_img = False elif samples['data_type'][0] == 'multi': has_img = True else: raise NotImplementedError # encode text text = samples['text_input'] # encode image if has_img: image = samples['image'] to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap( image, text) else: to_regress_tokens, targets = self.text2emb( text, add_special=True) to_regress_embeds = self.model.tok_embeddings( to_regress_tokens.input_ids) attention_mask = to_regress_tokens.attention_mask im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda() inputs_embeds = to_regress_embeds[:, :self.max_length] attention_mask = attention_mask[:, :self.max_length] targets = targets[:, :self.max_length] im_mask = im_mask[:, :self.max_length].bool() labels = targets else: im_mask = kwargs.get('im_mask', None) if im_mask is None and inputs_embeds is not None: im_mask = torch.zeros(inputs_embeds.shape[:2]).to( inputs_embeds.device) im_mask = im_mask.bool() output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, im_mask=im_mask, ) hidden_states = outputs[0] logits = self.output(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits, ) + outputs[1:] return (loss, ) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, im_mask=None, **kwargs): if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] position_ids = kwargs.get('position_ids', None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1]:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {'inputs_embeds': inputs_embeds} else: model_inputs = {'input_ids': input_ids} im_mask = im_mask model_inputs.update({ 'position_ids': position_ids, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache'), 'attention_mask': attention_mask, 'im_mask': im_mask, }) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple( past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''): prompt = '' if meta_instruction: prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n""" else: prompt += '' for record in history: prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n""" prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n""" return tokenizer([prompt], return_tensors='pt') @torch.no_grad() def chat( self, tokenizer, query: str, image: torch.Tensor = None, history: List[Tuple[str, str]] = [], streamer: Optional[BaseStreamer] = None, max_new_tokens: int = 1024, do_sample: bool = True, temperature: float = 1.0, top_p: float = 0.8, repetition_penalty: float=1.005, meta_instruction: str = 'You are an AI assistant whose name is InternLM-XComposer.\n' '- InternLM-XComposer is a conversational language model that is developed by Shanghai AI Laboratory. It is designed to be helpful, honest, and harmless.\n' '- InternLM-XComposer can understand and communicate fluently in English. You must respond only in English.', **kwargs, ): if image is None: inputs = self.build_inputs(tokenizer, query, history, meta_instruction) im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool() else: image = self.encode_img(image) inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image, history, meta_instruction) inputs = { k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v) } # also add end-of-assistant token in eos token id to avoid unnecessary generation eos_token_id = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0] ] outputs = self.generate( **inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=do_sample, temperature=temperature, top_p=top_p, eos_token_id=eos_token_id, repetition_penalty=repetition_penalty, im_mask=im_mask, **kwargs, ) if image is None: outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):] else: outputs = outputs[0].cpu().tolist() response = tokenizer.decode(outputs, skip_special_tokens=True) response = response.split('[UNUSED_TOKEN_145]')[0] history = history + [(query, response)] return response, history @torch.no_grad() def stream_chat( self, tokenizer, query: str, history: List[Tuple[str, str]] = [], max_new_tokens: int = 1024, do_sample: bool = True, temperature: float = 0.8, top_p: float = 0.8, **kwargs, ): """Return a generator in format: (response, history) Eg. ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')]) """ if BaseStreamer is None: raise ModuleNotFoundError( 'The version of `transformers` is too low. Please make sure ' 'that you have installed `transformers>=4.28.0`.') response_queue = queue.Queue(maxsize=20) class ChatStreamer(BaseStreamer): def __init__(self, tokenizer) -> None: super().__init__() self.tokenizer = tokenizer self.queue = response_queue self.query = query self.history = history self.response = '' self.received_inputs = False self.queue.put( (self.response, history + [(self.query, self.response)])) def put(self, value): if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError('ChatStreamer only supports batch size 1') elif len(value.shape) > 1: value = value[0] if not self.received_inputs: # The first received value is input_ids, ignore here self.received_inputs = True return token = self.tokenizer.decode([value[-1]], skip_special_tokens=True) if token.strip() != '[UNUSED_TOKEN_145]': self.response = self.response + token history = self.history + [(self.query, self.response)] self.queue.put((self.response, history)) def end(self): self.queue.put(None) def stream_producer(): return self.chat( tokenizer=tokenizer, query=query, streamer=ChatStreamer(tokenizer=tokenizer), history=history, max_new_tokens=max_new_tokens, do_sample=do_sample, temperature=temperature, top_p=top_p, **kwargs, ) def consumer(): producer = threading.Thread(target=stream_producer) producer.start() while True: res = response_queue.get() if res is None: return yield res return consumer()