--- base_model: microsoft/Phi-3-mini-128k-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: phi-3-mini-LoRA results: [] --- # phi-3-mini-LoRA This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co./microsoft/Phi-3-mini-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3351 | 0.17 | 500 | 0.3755 | | 0.3312 | 0.34 | 1000 | 0.3644 | | 0.3079 | 0.51 | 1500 | 0.3597 | | 0.3195 | 0.68 | 2000 | 0.3577 | | 0.3218 | 0.85 | 2500 | 0.3557 | | 0.3034 | 1.02 | 3000 | 0.3553 | | 0.296 | 1.19 | 3500 | 0.3543 | | 0.3175 | 1.36 | 4000 | 0.3539 | | 0.3257 | 1.53 | 4500 | 0.3533 | | 0.3263 | 1.7 | 5000 | 0.3526 | | 0.3209 | 1.87 | 5500 | 0.3522 | | 0.3221 | 2.04 | 6000 | 0.3528 | | 0.2927 | 2.21 | 6500 | 0.3526 | | 0.2922 | 2.38 | 7000 | 0.3527 | | 0.2968 | 2.55 | 7500 | 0.3525 | | 0.2968 | 2.72 | 8000 | 0.3526 | | 0.3094 | 2.89 | 8500 | 0.3525 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0 - Pytorch 2.2.1 - Datasets 2.17.0 - Tokenizers 0.15.2