HelloImSteven commited on
Commit
ba526b5
·
1 Parent(s): 3ae4a9e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 192.13 +/- 78.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
apollo11.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ecc3cfca115df7770e7c2d39940357bc8db0fead6b3580137f03e85739a8027
3
+ size 147386
apollo11/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
apollo11/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f798aa18670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f798aa18700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f798aa18790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f798aa18820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f798aa188b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f798aa18940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f798aa189d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f798aa18a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f798aa18af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f798aa18b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f798aa18c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f798aa18ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f798aa11ec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1048576,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1682786276318790260,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAcej72HHA7nT1tu1GPbbg9thk9nodRuQAAgD8AAIA/vR91vvuikrx291o7kuKWORSTAT6jfi66AACAPwAAgD9mf4Q+FOWIvI6q6rti2705ytT2vY54mToAAIA/AACAPzMxor2GZaA/SC8Nv6bW/L7TEV+8FTypvQAAAAAAAAAAhjlqPumTWbxkzww77XcOuch0y73y/Cu6AACAPwAAgD/ACoA9rlWOurpKwzgfTUq22galucZ13rcAAIA/AACAP6bs9D2OlcI/bVgfP9IojTyfQ6A91kC+PQAAAAAAAAAAaMiAvlIIxrsc1oi6pJDjtzglKD3ZU545AACAPwAAgD9N2jU9UnCaubbTgbrVBNs0w8FmO1TNlzkAAIA/AACAP1MLhz6jtAA/tYUevb4yhL7zlbY76iEfvQAAAAAAAAAAeMuAviwU0DwMHoo5h9MnuK1TZr4iur24AACAPwAAgD8zmM89Urj9uTp73DQZll0w/L8UOz1vKbQAAIA/AACAP1rcmr5Dbjo9uulcPndInzyeGJe+yNruvAAAgD8AAIA/s6CQPeyZ+Lm60527vzK9N/WxYznng5u2AACAPwAAgD+NIrG+RbPXvcklJ7dC3tW1tnv6PhIGVjYAAIA/AACAPw22Gj4fUfG7/sbpO26A9LkWFVq9flQDuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.04857599999999995,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlWWIY12kXECUhpRSlIwBbJRN6AOMAXSUR0CQx1Z39rGjdX2UKGgGaAloD0MIw/S9huBGYkCUhpRSlGgVTegDaBZHQJDKHWf9P1t1fZQoaAZoCWgPQwi86ZYd4pRdQJSGlFKUaBVN6ANoFkdAkMseRgZ0jnV9lChoBmgJaA9DCHQoQ1VM3SrAlIaUUpRoFUvsaBZHQJDLvJ9y9251fZQoaAZoCWgPQwgHtd/aibNhQJSGlFKUaBVN6ANoFkdAkNGEqhDgInV9lChoBmgJaA9DCAK8BRIUdVpAlIaUUpRoFU3oA2gWR0CQ1+4zrNW3dX2UKGgGaAloD0MIUYU/w5uBXkCUhpRSlGgVTegDaBZHQJDcCgh8pkR1fZQoaAZoCWgPQwgMBtfcUTZkQJSGlFKUaBVN6ANoFkdAkN0GpQ1rI3V9lChoBmgJaA9DCJBJRs5CPGNAlIaUUpRoFU3oA2gWR0CQ54pEQXhwdX2UKGgGaAloD0MIgLVq14R+YkCUhpRSlGgVTegDaBZHQJDsxHEuQIV1fZQoaAZoCWgPQwhe2QWD60FjQJSGlFKUaBVN6ANoFkdAkO5U1Muez3V9lChoBmgJaA9DCFuyKsLNH2BAlIaUUpRoFU3oA2gWR0CQ8NyLyc0+dX2UKGgGaAloD0MIJcreUk6ZakCUhpRSlGgVTWQCaBZHQJDyVjOLR8d1fZQoaAZoCWgPQwiQSrGjcaxgQJSGlFKUaBVN6ANoFkdAkPYh6jWTYHV9lChoBmgJaA9DCF3iyAOR0mJAlIaUUpRoFU3oA2gWR0CRAWMXrMTwdX2UKGgGaAloD0MIy/J1Gf6kZ0CUhpRSlGgVTVABaBZHQJEBxbzK9wp1fZQoaAZoCWgPQwhntcAek9hhQJSGlFKUaBVN6ANoFkdAkQPkFB6a9nV9lChoBmgJaA9DCPshNli49mFAlIaUUpRoFU3oA2gWR0CRBiZ/Tb35dX2UKGgGaAloD0MIGNF2TF1xYECUhpRSlGgVTegDaBZHQJELgUJv5xl1fZQoaAZoCWgPQwhIGtzWlhNgQJSGlFKUaBVN6ANoFkdAkQyAbhm5D3V9lChoBmgJaA9DCOHurN3212NAlIaUUpRoFU3oA2gWR0CRDRD4gzP9dX2UKGgGaAloD0MInMWLhSFnZECUhpRSlGgVTegDaBZHQJETeBXjlxR1fZQoaAZoCWgPQwiu00hL5R9fQJSGlFKUaBVN6ANoFkdAkRqxHG0eEXV9lChoBmgJaA9DCME4uHTMyWpAlIaUUpRoFU19AWgWR0CRHnu8brC4dX2UKGgGaAloD0MITRQhdbvCYkCUhpRSlGgVTegDaBZHQJEet0nw5Np1fZQoaAZoCWgPQwhMbamDvI9eQJSGlFKUaBVN6ANoFkdAkR+efh/AkHV9lChoBmgJaA9DCCkhWFWvfmJAlIaUUpRoFU3oA2gWR0CRbggssg+ydX2UKGgGaAloD0MI2pB/ZhC3MUCUhpRSlGgVTRIBaBZHQJFuRxkupS91fZQoaAZoCWgPQwh8SPjeXz5hQJSGlFKUaBVN6ANoFkdAkXIznq3VkXV9lChoBmgJaA9DCFOwxtl0V2JAlIaUUpRoFU3oA2gWR0CRdaARkEs8dX2UKGgGaAloD0MIZ5sb0xNxXkCUhpRSlGgVTegDaBZHQJF3Ackt29t1fZQoaAZoCWgPQwg4LA38KAdhQJSGlFKUaBVN6ANoFkdAkXrBQzk6tHV9lChoBmgJaA9DCCE82jji0mZAlIaUUpRoFU3oA2gWR0CRhrC/XXiBdX2UKGgGaAloD0MIyAvp8BCBUUCUhpRSlGgVTegDaBZHQJGHQYyfthN1fZQoaAZoCWgPQwi9bhEY6zVgQJSGlFKUaBVN6ANoFkdAkY0xDst03nV9lChoBmgJaA9DCF6FlJ9UDl9AlIaUUpRoFU3oA2gWR0CRlUSTyJ9BdX2UKGgGaAloD0MIBrr2BfRiNkCUhpRSlGgVTegDaBZHQJGWlAhStNl1fZQoaAZoCWgPQwgwuVFkrahcQJSGlFKUaBVN6ANoFkdAkZdMVHnU2HV9lChoBmgJaA9DCKweMA+Z4WJAlIaUUpRoFU3oA2gWR0CRoqJVbRnfdX2UKGgGaAloD0MIa2RXWkahXUCUhpRSlGgVTegDaBZHQJGllhUipvR1fZQoaAZoCWgPQwjhXwSNmY9cQJSGlFKUaBVN6ANoFkdAkaXJCBwuNHV9lChoBmgJaA9DCNzxJr/FN2FAlIaUUpRoFU3oA2gWR0CRpnhFEy+IdX2UKGgGaAloD0MIvCL430oSX0CUhpRSlGgVTegDaBZHQJGtv9pAUtZ1fZQoaAZoCWgPQwiduByvwOdkQJSGlFKUaBVN6ANoFkdAka4G7nPmgnV9lChoBmgJaA9DCMRafAqAf2JAlIaUUpRoFU3oA2gWR0CRsnuKGcnWdX2UKGgGaAloD0MIhJ1i1aBUY0CUhpRSlGgVTegDaBZHQJG2gDfWMCN1fZQoaAZoCWgPQwgmqUwxh/NkQJSGlFKUaBVN6ANoFkdAkbgRpUPxx3V9lChoBmgJaA9DCAnBqnr5ZmVAlIaUUpRoFU2cAWgWR0CRuuQZn+Q2dX2UKGgGaAloD0MIwVd06zVVXkCUhpRSlGgVTegDaBZHQJG72KUFB6d1fZQoaAZoCWgPQwivQspPKoVgQJSGlFKUaBVN6ANoFkdAkcmoMF2V3XV9lChoBmgJaA9DCCqsVFBRV2FAlIaUUpRoFU3oA2gWR0CRyi/vfCQ+dX2UKGgGaAloD0MIycwFLo/TX0CUhpRSlGgVTegDaBZHQJHQA7Rv3rV1fZQoaAZoCWgPQwi4HRoWI9dxQJSGlFKUaBVNhQNoFkdAkdFIiHIp6XV9lChoBmgJaA9DCKaXGMt0+mBAlIaUUpRoFU3oA2gWR0CR1Q3mFJxvdX2UKGgGaAloD0MIuYlamtthYECUhpRSlGgVTegDaBZHQJHV33TNMXd1fZQoaAZoCWgPQwhyNEdWfsk9QJSGlFKUaBVNDgFoFkdAkd7rg0j1PHV9lChoBmgJaA9DCJCEfTuJCCNAlIaUUpRoFUvuaBZHQJHiaX+l0o11fZQoaAZoCWgPQwiJB5RNufYyQJSGlFKUaBVL4GgWR0CR4oR4QjD9dX2UKGgGaAloD0MIqi11kNeGVkCUhpRSlGgVTegDaBZHQJHjNk8Rtgt1fZQoaAZoCWgPQwjgSKDBppteQJSGlFKUaBVN6ANoFkdAkeNfY4ACGXV9lChoBmgJaA9DCH41Bwjmb1hAlIaUUpRoFU3oA2gWR0CR4/pS75EddX2UKGgGaAloD0MIyy4YXHPtWkCUhpRSlGgVTegDaBZHQJHqI+kgwGp1fZQoaAZoCWgPQwjJdr6fmtRhQJSGlFKUaBVN6ANoFkdAkepjUI9kjHV9lChoBmgJaA9DCLSPFfw2xBlAlIaUUpRoFUvAaBZHQJHsrP1L8Jl1fZQoaAZoCWgPQwjVQsnk1MFiQJSGlFKUaBVN6ANoFkdAke4u8CgbqHV9lChoBmgJaA9DCJnXEYfskm9AlIaUUpRoFUvuaBZHQJHvpBQemvZ1fZQoaAZoCWgPQwhdqWdBKMxQQJSGlFKUaBVN6ANoFkdAkfGKt9x6wHV9lChoBmgJaA9DCARxHk7g6GJAlIaUUpRoFU3oA2gWR0CR8sNRWLgodX2UKGgGaAloD0MIfXiWIKO0ZECUhpRSlGgVTegDaBZHQJH1GRvFWGR1fZQoaAZoCWgPQwgcs+xJYCZhQJSGlFKUaBVN6ANoFkdAkfXi9mHxjXV9lChoBmgJaA9DCCFYVS+/WyxAlIaUUpRoFUvaaBZHQJH+vFHavid1fZQoaAZoCWgPQwjfpj/7kaxoQJSGlFKUaBVNSQFoFkdAkf/3hn8KonV9lChoBmgJaA9DCDuKc9RRT2NAlIaUUpRoFU3oA2gWR0CSAeEsrd30dX2UKGgGaAloD0MIO/w1WaMiZkCUhpRSlGgVTegDaBZHQJICUKzAvct1fZQoaAZoCWgPQwjC9/4GbZ1jQJSGlFKUaBVN6ANoFkdAkgjHRw6ySnV9lChoBmgJaA9DCLvW3qeqzGZAlIaUUpRoFU1mA2gWR0CSE/lt0mtydX2UKGgGaAloD0MIa5xNRwDOYkCUhpRSlGgVTegDaBZHQJIYQpqh11Z1fZQoaAZoCWgPQwjGMCdokw9eQJSGlFKUaBVN6ANoFkdAkhumipNsWXV9lChoBmgJaA9DCJiKjXmdImJAlIaUUpRoFU3oA2gWR0CSHJQxvegtdX2UKGgGaAloD0MIA8+9h8smYkCUhpRSlGgVTegDaBZHQJIjoT8HfMx1fZQoaAZoCWgPQwjDZKpg1MBgQJSGlFKUaBVN6ANoFkdAkiPm2gFotnV9lChoBmgJaA9DCP7viApVA2NAlIaUUpRoFU3oA2gWR0CSJkAyEcsEdX2UKGgGaAloD0MIp3aGqS2KYkCUhpRSlGgVTegDaBZHQJIpUneBQN11fZQoaAZoCWgPQwi0Hr5MlIxrQJSGlFKUaBVNLgFoFkdAkitQs052hnV9lChoBmgJaA9DCG5Nui0RRmNAlIaUUpRoFU3oA2gWR0CSK3vWpZOjdX2UKGgGaAloD0MIAtaqXZNsY0CUhpRSlGgVTegDaBZHQJIvQGX5WR11fZQoaAZoCWgPQwiIKvwZ3nBlQJSGlFKUaBVN6ANoFkdAkjAIUeuFH3V9lChoBmgJaA9DCP+uz5z1GGJAlIaUUpRoFU3oA2gWR0CSORmReTmodX2UKGgGaAloD0MIw++mW3bcYkCUhpRSlGgVTegDaBZHQJI6VWtEG7l1fZQoaAZoCWgPQwjxRXu8kEFsQJSGlFKUaBVNMAFoFkdAkjquyzHCGnV9lChoBmgJaA9DCDqVDADVumFAlIaUUpRoFU3oA2gWR0CSPDycCo0idX2UKGgGaAloD0MIMuVDUDWqY0CUhpRSlGgVTegDaBZHQJI8qERJ2+x1fZQoaAZoCWgPQwh4uYjvRFNlQJSGlFKUaBVN6ANoFkdAkkLxcmjTKHV9lChoBmgJaA9DCPZCAdvBsCNAlIaUUpRoFUvGaBZHQJJGxu0kWyl1fZQoaAZoCWgPQwgV/gxvVl1wQJSGlFKUaBVNPgJoFkdAkkh1JDmbLHV9lChoBmgJaA9DCIGv6NZr6F5AlIaUUpRoFU3oA2gWR0CSTXBYmsvJdX2UKGgGaAloD0MI6UZYVEQlYECUhpRSlGgVTegDaBZHQJJRULMLWqd1fZQoaAZoCWgPQwhHrTB9r1hiQJSGlFKUaBVN6ANoFkdAklWFA/s3Q3V9lChoBmgJaA9DCCbirfNv+GJAlIaUUpRoFU3oA2gWR0CSXYxeb/fgdX2UKGgGaAloD0MI7Eyh85obZUCUhpRSlGgVTegDaBZHQJJd2moBJZp1ZS4="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 128,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 4096,
82
+ "gamma": 0.99,
83
+ "gae_lambda": 0.95,
84
+ "ent_coef": 0.0,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 128,
88
+ "n_epochs": 8,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
apollo11/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e8b9dc7751e421e7309ffdff4c2e8785212b0be6219f954299bceda81d3bc00
3
+ size 87929
apollo11/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ce0932532a08f9fc0c6c08135f575b6b57628392575fcf6860fa3321f439a0
3
+ size 43329
apollo11/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
apollo11/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f798aa18670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f798aa18700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f798aa18790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f798aa18820>", "_build": "<function ActorCriticPolicy._build at 0x7f798aa188b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f798aa18940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f798aa189d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f798aa18a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f798aa18af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f798aa18b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f798aa18c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f798aa18ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f798aa11ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682786276318790260, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAcej72HHA7nT1tu1GPbbg9thk9nodRuQAAgD8AAIA/vR91vvuikrx291o7kuKWORSTAT6jfi66AACAPwAAgD9mf4Q+FOWIvI6q6rti2705ytT2vY54mToAAIA/AACAPzMxor2GZaA/SC8Nv6bW/L7TEV+8FTypvQAAAAAAAAAAhjlqPumTWbxkzww77XcOuch0y73y/Cu6AACAPwAAgD/ACoA9rlWOurpKwzgfTUq22galucZ13rcAAIA/AACAP6bs9D2OlcI/bVgfP9IojTyfQ6A91kC+PQAAAAAAAAAAaMiAvlIIxrsc1oi6pJDjtzglKD3ZU545AACAPwAAgD9N2jU9UnCaubbTgbrVBNs0w8FmO1TNlzkAAIA/AACAP1MLhz6jtAA/tYUevb4yhL7zlbY76iEfvQAAAAAAAAAAeMuAviwU0DwMHoo5h9MnuK1TZr4iur24AACAPwAAgD8zmM89Urj9uTp73DQZll0w/L8UOz1vKbQAAIA/AACAP1rcmr5Dbjo9uulcPndInzyeGJe+yNruvAAAgD8AAIA/s6CQPeyZ+Lm60527vzK9N/WxYznng5u2AACAPwAAgD+NIrG+RbPXvcklJ7dC3tW1tnv6PhIGVjYAAIA/AACAPw22Gj4fUfG7/sbpO26A9LkWFVq9flQDuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlWWIY12kXECUhpRSlIwBbJRN6AOMAXSUR0CQx1Z39rGjdX2UKGgGaAloD0MIw/S9huBGYkCUhpRSlGgVTegDaBZHQJDKHWf9P1t1fZQoaAZoCWgPQwi86ZYd4pRdQJSGlFKUaBVN6ANoFkdAkMseRgZ0jnV9lChoBmgJaA9DCHQoQ1VM3SrAlIaUUpRoFUvsaBZHQJDLvJ9y9251fZQoaAZoCWgPQwgHtd/aibNhQJSGlFKUaBVN6ANoFkdAkNGEqhDgInV9lChoBmgJaA9DCAK8BRIUdVpAlIaUUpRoFU3oA2gWR0CQ1+4zrNW3dX2UKGgGaAloD0MIUYU/w5uBXkCUhpRSlGgVTegDaBZHQJDcCgh8pkR1fZQoaAZoCWgPQwgMBtfcUTZkQJSGlFKUaBVN6ANoFkdAkN0GpQ1rI3V9lChoBmgJaA9DCJBJRs5CPGNAlIaUUpRoFU3oA2gWR0CQ54pEQXhwdX2UKGgGaAloD0MIgLVq14R+YkCUhpRSlGgVTegDaBZHQJDsxHEuQIV1fZQoaAZoCWgPQwhe2QWD60FjQJSGlFKUaBVN6ANoFkdAkO5U1Muez3V9lChoBmgJaA9DCFuyKsLNH2BAlIaUUpRoFU3oA2gWR0CQ8NyLyc0+dX2UKGgGaAloD0MIJcreUk6ZakCUhpRSlGgVTWQCaBZHQJDyVjOLR8d1fZQoaAZoCWgPQwiQSrGjcaxgQJSGlFKUaBVN6ANoFkdAkPYh6jWTYHV9lChoBmgJaA9DCF3iyAOR0mJAlIaUUpRoFU3oA2gWR0CRAWMXrMTwdX2UKGgGaAloD0MIy/J1Gf6kZ0CUhpRSlGgVTVABaBZHQJEBxbzK9wp1fZQoaAZoCWgPQwhntcAek9hhQJSGlFKUaBVN6ANoFkdAkQPkFB6a9nV9lChoBmgJaA9DCPshNli49mFAlIaUUpRoFU3oA2gWR0CRBiZ/Tb35dX2UKGgGaAloD0MIGNF2TF1xYECUhpRSlGgVTegDaBZHQJELgUJv5xl1fZQoaAZoCWgPQwhIGtzWlhNgQJSGlFKUaBVN6ANoFkdAkQyAbhm5D3V9lChoBmgJaA9DCOHurN3212NAlIaUUpRoFU3oA2gWR0CRDRD4gzP9dX2UKGgGaAloD0MInMWLhSFnZECUhpRSlGgVTegDaBZHQJETeBXjlxR1fZQoaAZoCWgPQwiu00hL5R9fQJSGlFKUaBVN6ANoFkdAkRqxHG0eEXV9lChoBmgJaA9DCME4uHTMyWpAlIaUUpRoFU19AWgWR0CRHnu8brC4dX2UKGgGaAloD0MITRQhdbvCYkCUhpRSlGgVTegDaBZHQJEet0nw5Np1fZQoaAZoCWgPQwhMbamDvI9eQJSGlFKUaBVN6ANoFkdAkR+efh/AkHV9lChoBmgJaA9DCCkhWFWvfmJAlIaUUpRoFU3oA2gWR0CRbggssg+ydX2UKGgGaAloD0MI2pB/ZhC3MUCUhpRSlGgVTRIBaBZHQJFuRxkupS91fZQoaAZoCWgPQwh8SPjeXz5hQJSGlFKUaBVN6ANoFkdAkXIznq3VkXV9lChoBmgJaA9DCFOwxtl0V2JAlIaUUpRoFU3oA2gWR0CRdaARkEs8dX2UKGgGaAloD0MIZ5sb0xNxXkCUhpRSlGgVTegDaBZHQJF3Ackt29t1fZQoaAZoCWgPQwg4LA38KAdhQJSGlFKUaBVN6ANoFkdAkXrBQzk6tHV9lChoBmgJaA9DCCE82jji0mZAlIaUUpRoFU3oA2gWR0CRhrC/XXiBdX2UKGgGaAloD0MIyAvp8BCBUUCUhpRSlGgVTegDaBZHQJGHQYyfthN1fZQoaAZoCWgPQwi9bhEY6zVgQJSGlFKUaBVN6ANoFkdAkY0xDst03nV9lChoBmgJaA9DCF6FlJ9UDl9AlIaUUpRoFU3oA2gWR0CRlUSTyJ9BdX2UKGgGaAloD0MIBrr2BfRiNkCUhpRSlGgVTegDaBZHQJGWlAhStNl1fZQoaAZoCWgPQwgwuVFkrahcQJSGlFKUaBVN6ANoFkdAkZdMVHnU2HV9lChoBmgJaA9DCKweMA+Z4WJAlIaUUpRoFU3oA2gWR0CRoqJVbRnfdX2UKGgGaAloD0MIa2RXWkahXUCUhpRSlGgVTegDaBZHQJGllhUipvR1fZQoaAZoCWgPQwjhXwSNmY9cQJSGlFKUaBVN6ANoFkdAkaXJCBwuNHV9lChoBmgJaA9DCNzxJr/FN2FAlIaUUpRoFU3oA2gWR0CRpnhFEy+IdX2UKGgGaAloD0MIvCL430oSX0CUhpRSlGgVTegDaBZHQJGtv9pAUtZ1fZQoaAZoCWgPQwiduByvwOdkQJSGlFKUaBVN6ANoFkdAka4G7nPmgnV9lChoBmgJaA9DCMRafAqAf2JAlIaUUpRoFU3oA2gWR0CRsnuKGcnWdX2UKGgGaAloD0MIhJ1i1aBUY0CUhpRSlGgVTegDaBZHQJG2gDfWMCN1fZQoaAZoCWgPQwgmqUwxh/NkQJSGlFKUaBVN6ANoFkdAkbgRpUPxx3V9lChoBmgJaA9DCAnBqnr5ZmVAlIaUUpRoFU2cAWgWR0CRuuQZn+Q2dX2UKGgGaAloD0MIwVd06zVVXkCUhpRSlGgVTegDaBZHQJG72KUFB6d1fZQoaAZoCWgPQwivQspPKoVgQJSGlFKUaBVN6ANoFkdAkcmoMF2V3XV9lChoBmgJaA9DCCqsVFBRV2FAlIaUUpRoFU3oA2gWR0CRyi/vfCQ+dX2UKGgGaAloD0MIycwFLo/TX0CUhpRSlGgVTegDaBZHQJHQA7Rv3rV1fZQoaAZoCWgPQwi4HRoWI9dxQJSGlFKUaBVNhQNoFkdAkdFIiHIp6XV9lChoBmgJaA9DCKaXGMt0+mBAlIaUUpRoFU3oA2gWR0CR1Q3mFJxvdX2UKGgGaAloD0MIuYlamtthYECUhpRSlGgVTegDaBZHQJHV33TNMXd1fZQoaAZoCWgPQwhyNEdWfsk9QJSGlFKUaBVNDgFoFkdAkd7rg0j1PHV9lChoBmgJaA9DCJCEfTuJCCNAlIaUUpRoFUvuaBZHQJHiaX+l0o11fZQoaAZoCWgPQwiJB5RNufYyQJSGlFKUaBVL4GgWR0CR4oR4QjD9dX2UKGgGaAloD0MIqi11kNeGVkCUhpRSlGgVTegDaBZHQJHjNk8Rtgt1fZQoaAZoCWgPQwjgSKDBppteQJSGlFKUaBVN6ANoFkdAkeNfY4ACGXV9lChoBmgJaA9DCH41Bwjmb1hAlIaUUpRoFU3oA2gWR0CR4/pS75EddX2UKGgGaAloD0MIyy4YXHPtWkCUhpRSlGgVTegDaBZHQJHqI+kgwGp1fZQoaAZoCWgPQwjJdr6fmtRhQJSGlFKUaBVN6ANoFkdAkepjUI9kjHV9lChoBmgJaA9DCLSPFfw2xBlAlIaUUpRoFUvAaBZHQJHsrP1L8Jl1fZQoaAZoCWgPQwjVQsnk1MFiQJSGlFKUaBVN6ANoFkdAke4u8CgbqHV9lChoBmgJaA9DCJnXEYfskm9AlIaUUpRoFUvuaBZHQJHvpBQemvZ1fZQoaAZoCWgPQwhdqWdBKMxQQJSGlFKUaBVN6ANoFkdAkfGKt9x6wHV9lChoBmgJaA9DCARxHk7g6GJAlIaUUpRoFU3oA2gWR0CR8sNRWLgodX2UKGgGaAloD0MIfXiWIKO0ZECUhpRSlGgVTegDaBZHQJH1GRvFWGR1fZQoaAZoCWgPQwgcs+xJYCZhQJSGlFKUaBVN6ANoFkdAkfXi9mHxjXV9lChoBmgJaA9DCCFYVS+/WyxAlIaUUpRoFUvaaBZHQJH+vFHavid1fZQoaAZoCWgPQwjfpj/7kaxoQJSGlFKUaBVNSQFoFkdAkf/3hn8KonV9lChoBmgJaA9DCDuKc9RRT2NAlIaUUpRoFU3oA2gWR0CSAeEsrd30dX2UKGgGaAloD0MIO/w1WaMiZkCUhpRSlGgVTegDaBZHQJICUKzAvct1fZQoaAZoCWgPQwjC9/4GbZ1jQJSGlFKUaBVN6ANoFkdAkgjHRw6ySnV9lChoBmgJaA9DCLvW3qeqzGZAlIaUUpRoFU1mA2gWR0CSE/lt0mtydX2UKGgGaAloD0MIa5xNRwDOYkCUhpRSlGgVTegDaBZHQJIYQpqh11Z1fZQoaAZoCWgPQwjGMCdokw9eQJSGlFKUaBVN6ANoFkdAkhumipNsWXV9lChoBmgJaA9DCJiKjXmdImJAlIaUUpRoFU3oA2gWR0CSHJQxvegtdX2UKGgGaAloD0MIA8+9h8smYkCUhpRSlGgVTegDaBZHQJIjoT8HfMx1fZQoaAZoCWgPQwjDZKpg1MBgQJSGlFKUaBVN6ANoFkdAkiPm2gFotnV9lChoBmgJaA9DCP7viApVA2NAlIaUUpRoFU3oA2gWR0CSJkAyEcsEdX2UKGgGaAloD0MIp3aGqS2KYkCUhpRSlGgVTegDaBZHQJIpUneBQN11fZQoaAZoCWgPQwi0Hr5MlIxrQJSGlFKUaBVNLgFoFkdAkitQs052hnV9lChoBmgJaA9DCG5Nui0RRmNAlIaUUpRoFU3oA2gWR0CSK3vWpZOjdX2UKGgGaAloD0MIAtaqXZNsY0CUhpRSlGgVTegDaBZHQJIvQGX5WR11fZQoaAZoCWgPQwiIKvwZ3nBlQJSGlFKUaBVN6ANoFkdAkjAIUeuFH3V9lChoBmgJaA9DCP+uz5z1GGJAlIaUUpRoFU3oA2gWR0CSORmReTmodX2UKGgGaAloD0MIw++mW3bcYkCUhpRSlGgVTegDaBZHQJI6VWtEG7l1fZQoaAZoCWgPQwjxRXu8kEFsQJSGlFKUaBVNMAFoFkdAkjquyzHCGnV9lChoBmgJaA9DCDqVDADVumFAlIaUUpRoFU3oA2gWR0CSPDycCo0idX2UKGgGaAloD0MIMuVDUDWqY0CUhpRSlGgVTegDaBZHQJI8qERJ2+x1fZQoaAZoCWgPQwh4uYjvRFNlQJSGlFKUaBVN6ANoFkdAkkLxcmjTKHV9lChoBmgJaA9DCPZCAdvBsCNAlIaUUpRoFUvGaBZHQJJGxu0kWyl1fZQoaAZoCWgPQwgV/gxvVl1wQJSGlFKUaBVNPgJoFkdAkkh1JDmbLHV9lChoBmgJaA9DCIGv6NZr6F5AlIaUUpRoFU3oA2gWR0CSTXBYmsvJdX2UKGgGaAloD0MI6UZYVEQlYECUhpRSlGgVTegDaBZHQJJRULMLWqd1fZQoaAZoCWgPQwhHrTB9r1hiQJSGlFKUaBVN6ANoFkdAklWFA/s3Q3V9lChoBmgJaA9DCCbirfNv+GJAlIaUUpRoFU3oA2gWR0CSXYxeb/fgdX2UKGgGaAloD0MI7Eyh85obZUCUhpRSlGgVTegDaBZHQJJd2moBJZp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 4096, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (236 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 192.12773611742278, "std_reward": 78.31482554186357, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-29T17:02:35.343158"}