File size: 3,575 Bytes
a01eb4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: Hasanur525/deed-summarization_version_5
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: deed-summarization_version_10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deed-summarization_version_10

This model is a fine-tuned version of [Hasanur525/deed-summarization_version_5](https://huggingface.co./Hasanur525/deed-summarization_version_5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4150
- Rouge1: 0.3247
- Rouge2: 0.1432
- Rougel: 0.3268
- Rougelsum: 0.3201
- Gen Len: 98.4206

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5000
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.6983        | 1.0   | 529   | 1.8154          | 0.0    | 0.0    | 0.0    | 0.0       | 72.9565 |
| 2.3213        | 2.0   | 1058  | 1.5403          | 0.0    | 0.0    | 0.0    | 0.0       | 82.2401 |
| 1.0315        | 3.0   | 1587  | 1.2686          | 0.0    | 0.0    | 0.0    | 0.0       | 88.1635 |
| 1.7308        | 4.0   | 2116  | 1.0681          | 0.0    | 0.0    | 0.0    | 0.0       | 89.7155 |
| 1.1384        | 5.0   | 2645  | 0.9338          | 0.0    | 0.0    | 0.0    | 0.0       | 93.0586 |
| 1.6608        | 6.0   | 3174  | 0.8329          | 0.0199 | 0.0    | 0.0199 | 0.0199    | 95.5454 |
| 1.8287        | 7.0   | 3703  | 0.7506          | 0.0099 | 0.0    | 0.0099 | 0.0099    | 96.9036 |
| 0.4304        | 8.0   | 4232  | 0.6827          | 0.0742 | 0.036  | 0.0692 | 0.069     | 96.8894 |
| 1.1026        | 9.0   | 4761  | 0.6189          | 0.0888 | 0.0516 | 0.0888 | 0.0859    | 97.5312 |
| 0.8345        | 10.0  | 5290  | 0.5662          | 0.0497 | 0.0189 | 0.0443 | 0.0443    | 96.8025 |
| 0.3368        | 11.0  | 5819  | 0.5291          | 0.0394 | 0.0258 | 0.0398 | 0.0394    | 97.9783 |
| 0.2668        | 12.0  | 6348  | 0.5010          | 0.1466 | 0.0379 | 0.1368 | 0.1345    | 97.4386 |
| 0.8294        | 13.0  | 6877  | 0.4787          | 0.1815 | 0.0683 | 0.1744 | 0.167     | 97.8639 |
| 0.4896        | 14.0  | 7406  | 0.4603          | 0.1946 | 0.0732 | 0.1948 | 0.1899    | 97.707  |
| 0.4353        | 15.0  | 7935  | 0.4446          | 0.158  | 0.0664 | 0.1476 | 0.1456    | 97.8837 |
| 1.8165        | 16.0  | 8464  | 0.4314          | 0.3104 | 0.1119 | 0.3005 | 0.2917    | 98.4329 |
| 0.3503        | 17.0  | 8993  | 0.4236          | 0.2872 | 0.1234 | 0.2785 | 0.2681    | 98.2259 |
| 0.5756        | 18.0  | 9522  | 0.4199          | 0.339  | 0.1242 | 0.3348 | 0.3252    | 98.31   |
| 0.7974        | 19.0  | 10051 | 0.4176          | 0.3437 | 0.1568 | 0.3477 | 0.338     | 98.3932 |
| 0.224         | 20.0  | 10580 | 0.4150          | 0.3247 | 0.1432 | 0.3268 | 0.3201    | 98.4206 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0.dev20230811+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2