HarshalBhg commited on
Commit
f8345e3
·
1 Parent(s): cdd5538

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - Ramyashree/Dataset-train500-test100
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: I weant to use my other account, switch them
14
+ - text: I can't remember my password, help me reset it
15
+ - text: the game was postponed and i wanna get a reimbursement
16
+ - text: where to change to another online account
17
+ - text: the show was cancelled, get a reimbursement
18
+ pipeline_tag: text-classification
19
+ inference: true
20
+ base_model: thenlper/gte-large
21
+ model-index:
22
+ - name: SetFit with thenlper/gte-large
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Ramyashree/Dataset-train500-test100
29
+ type: Ramyashree/Dataset-train500-test100
30
+ split: test
31
+ metrics:
32
+ - type: accuracy
33
+ value: 1.0
34
+ name: Accuracy
35
+ ---
36
+
37
+ # SetFit with thenlper/gte-large
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [Ramyashree/Dataset-train500-test100](https://huggingface.co/datasets/Ramyashree/Dataset-train500-test100) dataset that can be used for Text Classification. This SetFit model uses [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [thenlper/gte-large](https://huggingface.co/thenlper/gte-large)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 10 classes
54
+ - **Training Dataset:** [Ramyashree/Dataset-train500-test100](https://huggingface.co/datasets/Ramyashree/Dataset-train500-test100)
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:--------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | create_account | <ul><li>"I don't have an online account, what do I have to do to register?"</li><li>'can you tell me if i can regisger two accounts with a single email address?'</li><li>'I have no online account, open one, please'</li></ul> |
68
+ | edit_account | <ul><li>'how can I modify the information on my profile?'</li><li>'can u ask an agent how to make changes to my profile?'</li><li>'I want to update the information on my profile'</li></ul> |
69
+ | delete_account | <ul><li>'can I close my account?'</li><li>"I don't want my account, can you delete it?"</li><li>'how do i close my online account?'</li></ul> |
70
+ | switch_account | <ul><li>'I would like to use my other online account , could you switch them, please?'</li><li>'i want to use my other online account, can u change them?'</li><li>'how do i change to another account?'</li></ul> |
71
+ | get_invoice | <ul><li>'what can you tell me about getting some bills?'</li><li>'tell me where I can request a bill'</li><li>'ask an agent if i can obtain some bills'</li></ul> |
72
+ | get_refund | <ul><li>'the game was postponed, help me obtain a reimbursement'</li><li>'the game was postponed, what should I do to obtain a reimbursement?'</li><li>'the concert was postponed, what should I do to request a reimbursement?'</li></ul> |
73
+ | payment_issue | <ul><li>'i have an issue making a payment with card and i want to inform of it, please'</li><li>'I got an error message when I attempted to pay, but my card was charged anyway and I want to notify it'</li><li>'I want to notify a problem making a payment, can you help me?'</li></ul> |
74
+ | check_refund_policy | <ul><li>"I'm interested in your reimbursement polivy"</li><li>'i wanna see your refund policy, can u help me?'</li><li>'where do I see your money back policy?'</li></ul> |
75
+ | recover_password | <ul><li>'my online account was hacked and I want tyo get it back'</li><li>"I lost my password and I'd like to retrieve it, please"</li><li>'could u ask an agent how i can reset my password?'</li></ul> |
76
+ | track_refund | <ul><li>'tell me if my refund was processed'</li><li>'I need help checking the status of my refund'</li><li>'I want to see the status of my refund, can you help me?'</li></ul> |
77
+
78
+ ## Evaluation
79
+
80
+ ### Metrics
81
+ | Label | Accuracy |
82
+ |:--------|:---------|
83
+ | **all** | 1.0 |
84
+
85
+ ## Uses
86
+
87
+ ### Direct Use for Inference
88
+
89
+ First install the SetFit library:
90
+
91
+ ```bash
92
+ pip install setfit
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+
97
+ ```python
98
+ from setfit import SetFitModel
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SetFitModel.from_pretrained("HarshalBhg/gte-large-setfit-train-test1")
102
+ # Run inference
103
+ preds = model("where to change to another online account")
104
+ ```
105
+
106
+ <!--
107
+ ### Downstream Use
108
+
109
+ *List how someone could finetune this model on their own dataset.*
110
+ -->
111
+
112
+ <!--
113
+ ### Out-of-Scope Use
114
+
115
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
116
+ -->
117
+
118
+ <!--
119
+ ## Bias, Risks and Limitations
120
+
121
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
122
+ -->
123
+
124
+ <!--
125
+ ### Recommendations
126
+
127
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
128
+ -->
129
+
130
+ ## Training Details
131
+
132
+ ### Training Set Metrics
133
+ | Training set | Min | Median | Max |
134
+ |:-------------|:----|:-------|:----|
135
+ | Word count | 3 | 10.258 | 24 |
136
+
137
+ | Label | Training Sample Count |
138
+ |:--------------------|:----------------------|
139
+ | check_refund_policy | 50 |
140
+ | create_account | 50 |
141
+ | delete_account | 50 |
142
+ | edit_account | 50 |
143
+ | get_invoice | 50 |
144
+ | get_refund | 50 |
145
+ | payment_issue | 50 |
146
+ | recover_password | 50 |
147
+ | switch_account | 50 |
148
+ | track_refund | 50 |
149
+
150
+ ### Training Hyperparameters
151
+ - batch_size: (16, 16)
152
+ - num_epochs: (1, 1)
153
+ - max_steps: -1
154
+ - sampling_strategy: oversampling
155
+ - num_iterations: 20
156
+ - body_learning_rate: (2e-05, 1e-05)
157
+ - head_learning_rate: 0.01
158
+ - loss: CosineSimilarityLoss
159
+ - distance_metric: cosine_distance
160
+ - margin: 0.25
161
+ - end_to_end: False
162
+ - use_amp: False
163
+ - warmup_proportion: 0.1
164
+ - seed: 42
165
+ - eval_max_steps: -1
166
+ - load_best_model_at_end: False
167
+
168
+ ### Training Results
169
+ | Epoch | Step | Training Loss | Validation Loss |
170
+ |:------:|:----:|:-------------:|:---------------:|
171
+ | 0.0008 | 1 | 0.3248 | - |
172
+ | 0.04 | 50 | 0.1606 | - |
173
+ | 0.08 | 100 | 0.0058 | - |
174
+ | 0.12 | 150 | 0.0047 | - |
175
+ | 0.16 | 200 | 0.0009 | - |
176
+ | 0.2 | 250 | 0.0007 | - |
177
+ | 0.24 | 300 | 0.001 | - |
178
+ | 0.28 | 350 | 0.0008 | - |
179
+ | 0.32 | 400 | 0.0005 | - |
180
+ | 0.36 | 450 | 0.0004 | - |
181
+ | 0.4 | 500 | 0.0005 | - |
182
+ | 0.44 | 550 | 0.0005 | - |
183
+ | 0.48 | 600 | 0.0006 | - |
184
+ | 0.52 | 650 | 0.0005 | - |
185
+ | 0.56 | 700 | 0.0004 | - |
186
+ | 0.6 | 750 | 0.0004 | - |
187
+ | 0.64 | 800 | 0.0002 | - |
188
+ | 0.68 | 850 | 0.0003 | - |
189
+ | 0.72 | 900 | 0.0002 | - |
190
+ | 0.76 | 950 | 0.0002 | - |
191
+ | 0.8 | 1000 | 0.0003 | - |
192
+ | 0.84 | 1050 | 0.0002 | - |
193
+ | 0.88 | 1100 | 0.0002 | - |
194
+ | 0.92 | 1150 | 0.0003 | - |
195
+ | 0.96 | 1200 | 0.0003 | - |
196
+ | 1.0 | 1250 | 0.0003 | - |
197
+
198
+ ### Framework Versions
199
+ - Python: 3.10.12
200
+ - SetFit: 1.0.1
201
+ - Sentence Transformers: 2.2.2
202
+ - Transformers: 4.35.2
203
+ - PyTorch: 2.1.0+cu121
204
+ - Datasets: 2.15.0
205
+ - Tokenizers: 0.15.0
206
+
207
+ ## Citation
208
+
209
+ ### BibTeX
210
+ ```bibtex
211
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
212
+ doi = {10.48550/ARXIV.2209.11055},
213
+ url = {https://arxiv.org/abs/2209.11055},
214
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
215
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
216
+ title = {Efficient Few-Shot Learning Without Prompts},
217
+ publisher = {arXiv},
218
+ year = {2022},
219
+ copyright = {Creative Commons Attribution 4.0 International}
220
+ }
221
+ ```
222
+
223
+ <!--
224
+ ## Glossary
225
+
226
+ *Clearly define terms in order to be accessible across audiences.*
227
+ -->
228
+
229
+ <!--
230
+ ## Model Card Authors
231
+
232
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
233
+ -->
234
+
235
+ <!--
236
+ ## Model Card Contact
237
+
238
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
239
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/thenlper_gte-large/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.35.2",
5
+ "pytorch": "2.1.0+cu121"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cabfae8f88f00063b865ebcce61f56279b2eb28265be865304aea85b123708d
3
+ size 1340612432
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:069de2555b282c05738478b8a89c04f3c8aa285eb0994318f4e95723c6f13cbe
3
+ size 83591
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 128,
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff