{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f88673928c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8805e03e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680431221493549003, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAivHbPiHsZDuahgw/ivHbPiHsZDuahgw/ivHbPiHsZDuahgw/ivHbPiHsZDuahgw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6YauP2Alwz9Xu5C+hBbHP5IKsD/7upq6YEFwPkIBJz/WuY2/UjBMPk/FgL+jPdq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyK8ds+IexkO5qGDD9Ie/O5us9lutFJEDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42957717 0.00349308 0.54892886]\n [0.42957717 0.00349308 0.54892886]\n [0.42957717 0.00349308 0.54892886]\n [0.42957717 0.00349308 0.54892886]]", "desired_goal": "[[ 1.3634921e+00 1.5245781e+00 -2.8267929e-01]\n [ 1.5553746e+00 1.3753226e+00 -1.1804992e-03]\n [ 2.3462439e-01 6.5236294e-01 -1.1072338e+00]\n [ 1.9940308e-01 -1.0060214e+00 -4.2625150e-01]]", "observation": "[[ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]\n [ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]\n [ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]\n [ 4.2957717e-01 3.4930783e-03 5.4892886e-01 -4.6440423e-04\n -8.7666104e-04 8.8066617e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMIvmvR3L371DmYs+W9DUvTIHeT37TrI9F+9Au8CXqL3Lj0I+wlCiPS+bAzvkGFA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11257017 -0.10927413 0.27265367]\n [-0.10391303 0.06079788 0.08706471]\n [-0.00294394 -0.08232069 0.19000165]\n [ 0.0792556 0.00200815 0.20321995]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIj/tW68Tl17+UhpRSlIwBbJRLMowBdJRHQK1hvwOvt+l1fZQoaAZoCWgPQwjxK9ZwkXvdv5SGlFKUaBVLMmgWR0CtYaOtfXwtdX2UKGgGaAloD0MIzywJUFPLxL+UhpRSlGgVSzJoFkdArWGHNiYsunV9lChoBmgJaA9DCADhQ4mWPOK/lIaUUpRoFUsyaBZHQK1haumJm/Z1fZQoaAZoCWgPQwh2Ul+WdmrIv5SGlFKUaBVLMmgWR0CtYnmNipeedX2UKGgGaAloD0MIw5rKorCL2r+UhpRSlGgVSzJoFkdArWJeOOsDGXV9lChoBmgJaA9DCLXeb7Tjhs+/lIaUUpRoFUsyaBZHQK1iQcwQDmt1fZQoaAZoCWgPQwhwXwfOGVHWv5SGlFKUaBVLMmgWR0CtYiUdilSCdX2UKGgGaAloD0MITwXc8/xp1L+UhpRSlGgVSzJoFkdArWM0580DU3V9lChoBmgJaA9DCNc07zhFR86/lIaUUpRoFUsyaBZHQK1jGajvd/J1fZQoaAZoCWgPQwj8q8d9q3XSv5SGlFKUaBVLMmgWR0CtYv00m+j/dX2UKGgGaAloD0MIbsDnhxHC1r+UhpRSlGgVSzJoFkdArWLgkeIVM3V9lChoBmgJaA9DCNpWs874vtO/lIaUUpRoFUsyaBZHQK1j8gqVhTh1fZQoaAZoCWgPQwiDp5Ar9SzZv5SGlFKUaBVLMmgWR0CtY9bDEWIodX2UKGgGaAloD0MIjpPCvMeZ0r+UhpRSlGgVSzJoFkdArWO6OvMbFXV9lChoBmgJaA9DCHHIBtLFpt+/lIaUUpRoFUsyaBZHQK1jnZV4oql1fZQoaAZoCWgPQwiCOuXRjbDWv5SGlFKUaBVLMmgWR0CtZK9t/FzddX2UKGgGaAloD0MI6lp7n6pCyb+UhpRSlGgVSzJoFkdArWSUI/qxDHV9lChoBmgJaA9DCNldoKTAAs6/lIaUUpRoFUsyaBZHQK1kd6Rhc7h1fZQoaAZoCWgPQwi366UpApzAv5SGlFKUaBVLMmgWR0CtZFr9ETg3dX2UKGgGaAloD0MIceZXc4Bg2L+UhpRSlGgVSzJoFkdArWVpxLkCFXV9lChoBmgJaA9DCOusFthjIsG/lIaUUpRoFUsyaBZHQK1lTnnuAqd1fZQoaAZoCWgPQwj68CxBRkDLv5SGlFKUaBVLMmgWR0CtZTIClrM1dX2UKGgGaAloD0MIf9sTJLa70L+UhpRSlGgVSzJoFkdArWUVVYISlHV9lChoBmgJaA9DCIvAWN/A5L6/lIaUUpRoFUsyaBZHQK1mNNzr/sF1fZQoaAZoCWgPQwhuxJPdzGjiv5SGlFKUaBVLMmgWR0CtZhoH1OCYdX2UKGgGaAloD0MI3/3xXrUy2b+UhpRSlGgVSzJoFkdArWX9k6Lfk3V9lChoBmgJaA9DCOIC0Chd+su/lIaUUpRoFUsyaBZHQK1l4PDHfdh1fZQoaAZoCWgPQwiJXkax3NLMv5SGlFKUaBVLMmgWR0CtZve4kNWmdX2UKGgGaAloD0MI3Xh3ZKw227+UhpRSlGgVSzJoFkdArWbcXLvCuXV9lChoBmgJaA9DCIf7yK1Jt9i/lIaUUpRoFUsyaBZHQK1mv+irT6V1fZQoaAZoCWgPQwimSL4SSIncv5SGlFKUaBVLMmgWR0CtZqNDMNc4dX2UKGgGaAloD0MIat5xio7kwL+UhpRSlGgVSzJoFkdArWe3P1L8JnV9lChoBmgJaA9DCC0GD9O+udO/lIaUUpRoFUsyaBZHQK1nm/oJRfp1fZQoaAZoCWgPQwgjaTf6mA/av5SGlFKUaBVLMmgWR0CtZ3+F10T2dX2UKGgGaAloD0MI4biMmxpo0r+UhpRSlGgVSzJoFkdArWdi5byH23V9lChoBmgJaA9DCMTuO4bHfta/lIaUUpRoFUsyaBZHQK1oj90ihWZ1fZQoaAZoCWgPQwjQRxlxAWjXv5SGlFKUaBVLMmgWR0CtaHSIHkcTdX2UKGgGaAloD0MIWd/A5EaR3b+UhpRSlGgVSzJoFkdArWhYEyLyc3V9lChoBmgJaA9DCK2kFd9Q+Mq/lIaUUpRoFUsyaBZHQK1oO3G4qgB1fZQoaAZoCWgPQwiAgSBAho7Hv5SGlFKUaBVLMmgWR0CtaVJmmLtNdX2UKGgGaAloD0MIPZl/9E2azL+UhpRSlGgVSzJoFkdArWk3E/B3zXV9lChoBmgJaA9DCMhESrN5HNC/lIaUUpRoFUsyaBZHQK1pGqLjxTd1fZQoaAZoCWgPQwjYRjzZzYzcv5SGlFKUaBVLMmgWR0CtaP34Kx9odX2UKGgGaAloD0MIokYhyaze0b+UhpRSlGgVSzJoFkdArWoPcQAdXHV9lChoBmgJaA9DCFCKVu4FZti/lIaUUpRoFUsyaBZHQK1p9Bk7Oml1fZQoaAZoCWgPQwh3EDtT6LzIv5SGlFKUaBVLMmgWR0Ctadeii7CjdX2UKGgGaAloD0MIR3U6kPXU0b+UhpRSlGgVSzJoFkdArWm6/GlyinV9lChoBmgJaA9DCJlH/mDgucO/lIaUUpRoFUsyaBZHQK1qzp4bCJp1fZQoaAZoCWgPQwh7Lei9MQTVv5SGlFKUaBVLMmgWR0CtarNIK+i8dX2UKGgGaAloD0MIo1cDlIYax7+UhpRSlGgVSzJoFkdArWqWzyBkJHV9lChoBmgJaA9DCDJyFva0w8e/lIaUUpRoFUsyaBZHQK1qeixFAml1fZQoaAZoCWgPQwiKVYMwt3vbv5SGlFKUaBVLMmgWR0Cta4fP5YYBdX2UKGgGaAloD0MI8MLWbOUl1b+UhpRSlGgVSzJoFkdArWtsf1YhdXV9lChoBmgJaA9DCCTwh5//HsC/lIaUUpRoFUsyaBZHQK1rT/d69kB1fZQoaAZoCWgPQwgWMlcG1Qbbv5SGlFKUaBVLMmgWR0CtazNQKrq/dX2UKGgGaAloD0MIZyYYzjXM2r+UhpRSlGgVSzJoFkdArWxCxiXpn3V9lChoBmgJaA9DCOF/K9mxEdK/lIaUUpRoFUsyaBZHQK1sJ3Tuv2Z1fZQoaAZoCWgPQwid8uhGWFTSv5SGlFKUaBVLMmgWR0CtbAsCkoF3dX2UKGgGaAloD0MIxEFClC9o3L+UhpRSlGgVSzJoFkdArWvuWv8qF3V9lChoBmgJaA9DCJz6QPLOod+/lIaUUpRoFUsyaBZHQK1tCjQAuI11fZQoaAZoCWgPQwiiDcAGRIjQv5SGlFKUaBVLMmgWR0CtbO7aRISUdX2UKGgGaAloD0MIv2VOl8XE4L+UhpRSlGgVSzJoFkdArWzSa1Cw8nV9lChoBmgJaA9DCC/6CtKMRd6/lIaUUpRoFUsyaBZHQK1staTwDvF1fZQoaAZoCWgPQwhOY3st6L3Uv5SGlFKUaBVLMmgWR0CtbcRl6JIldX2UKGgGaAloD0MI/rW8cr1t0r+UhpRSlGgVSzJoFkdArW2pGKAJ9nV9lChoBmgJaA9DCIRkARO4deG/lIaUUpRoFUsyaBZHQK1tjJlrdnF1fZQoaAZoCWgPQwhNFYxK6gTZv5SGlFKUaBVLMmgWR0CtbW/29L6DdX2UKGgGaAloD0MI/I123PC717+UhpRSlGgVSzJoFkdArW5/fl6qsHV9lChoBmgJaA9DCI+qJoi6D86/lIaUUpRoFUsyaBZHQK1uZCKrJbN1fZQoaAZoCWgPQwj/dtmvO93Tv5SGlFKUaBVLMmgWR0Ctbket8uzydX2UKGgGaAloD0MIuyU5YFeT1r+UhpRSlGgVSzJoFkdArW4rDZUT+XV9lChoBmgJaA9DCP0RhgFLruC/lIaUUpRoFUsyaBZHQK1vOcS5AhV1fZQoaAZoCWgPQwid1QJ7TKTMv5SGlFKUaBVLMmgWR0Ctbx6AOJ+EdX2UKGgGaAloD0MIDJV/La9c0L+UhpRSlGgVSzJoFkdArW8CAe7tiXV9lChoBmgJaA9DCFDIztvY7Ne/lIaUUpRoFUsyaBZHQK1u5Vd5Y5l1fZQoaAZoCWgPQwgyWdx/ZDrTv5SGlFKUaBVLMmgWR0Ctb/T7/GVBdX2UKGgGaAloD0MIrkfhehSu0b+UhpRSlGgVSzJoFkdArW/ZnSOR1XV9lChoBmgJaA9DCPEQxk/j3sy/lIaUUpRoFUsyaBZHQK1vvS1maph1fZQoaAZoCWgPQwgw9IjRcwvXv5SGlFKUaBVLMmgWR0Ctb6CIUJv6dX2UKGgGaAloD0MIDVNb6iCv2r+UhpRSlGgVSzJoFkdArXCxY5ksjHV9lChoBmgJaA9DCIPCoEyjycm/lIaUUpRoFUsyaBZHQK1wlgCOmzl1fZQoaAZoCWgPQwhWSs/0EmPcv5SGlFKUaBVLMmgWR0CtcHmLDQ7cdX2UKGgGaAloD0MI9nzNctno0L+UhpRSlGgVSzJoFkdArXBc6FM7EHV9lChoBmgJaA9DCBx4tdyZCde/lIaUUpRoFUsyaBZHQK1xa14Pf9B1fZQoaAZoCWgPQwipvvOLEvTSv5SGlFKUaBVLMmgWR0CtcVAE+xGEdX2UKGgGaAloD0MIs0XSbvSx4L+UhpRSlGgVSzJoFkdArXEzeGfwqnV9lChoBmgJaA9DCC4gtB6+TNK/lIaUUpRoFUsyaBZHQK1xFtrKvFF1fZQoaAZoCWgPQwjoE3mSdM3Av5SGlFKUaBVLMmgWR0Ctcie1jRUndX2UKGgGaAloD0MIIQN5dvnWyb+UhpRSlGgVSzJoFkdArXIMZR8+inV9lChoBmgJaA9DCMMoCB7f3sO/lIaUUpRoFUsyaBZHQK1x7+2mYSh1fZQoaAZoCWgPQwi5jJsaaD7Vv5SGlFKUaBVLMmgWR0CtcdNAC4jKdX2UKGgGaAloD0MI/BwfLc4Y3b+UhpRSlGgVSzJoFkdArXLnazu4PXV9lChoBmgJaA9DCF9/Ep87wdq/lIaUUpRoFUsyaBZHQK1yzBInSfF1fZQoaAZoCWgPQwi+3CdHAaLGv5SGlFKUaBVLMmgWR0Ctcq+NtIkJdX2UKGgGaAloD0MIai+i7Zi64L+UhpRSlGgVSzJoFkdArXKS6BiCrnV9lChoBmgJaA9DCNCc9SnHZNu/lIaUUpRoFUsyaBZHQK1zpPoFFDx1fZQoaAZoCWgPQwhAM4gP7PjYv5SGlFKUaBVLMmgWR0Ctc4mkN4JNdX2UKGgGaAloD0MIWg2Jeyx9yr+UhpRSlGgVSzJoFkdArXNtHWjGk3V9lChoBmgJaA9DCE9Y4gFlU9y/lIaUUpRoFUsyaBZHQK1zUHoHLRt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.9, "gae_lambda": 0.98, "ent_coef": 0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |