Update README.md
Browse files
README.md
CHANGED
@@ -1,109 +1,116 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
```
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- mistralai/Mistral-7B-v0.1
|
7 |
+
tags:
|
8 |
+
- mteb
|
9 |
+
- transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
## SPEED-embedding-7b-instruct
|
13 |
+
|
14 |
+
[Little Giants: Synthesizing High-Quality Embedding Data at Scale](https://arxiv.org/pdf/2410.18634.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2024
|
15 |
+
|
16 |
+
This model has 32 layers and the embedding size is 4096.
|
17 |
+
|
18 |
+
## Usage
|
19 |
+
|
20 |
+
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
|
21 |
+
|
22 |
+
### Transformers
|
23 |
+
|
24 |
+
```python
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
|
28 |
+
from torch import Tensor
|
29 |
+
from transformers import AutoTokenizer, AutoModel
|
30 |
+
|
31 |
+
|
32 |
+
def last_token_pool(last_hidden_states: Tensor,
|
33 |
+
attention_mask: Tensor) -> Tensor:
|
34 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
35 |
+
if left_padding:
|
36 |
+
return last_hidden_states[:, -1]
|
37 |
+
else:
|
38 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
39 |
+
batch_size = last_hidden_states.shape[0]
|
40 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
41 |
+
|
42 |
+
|
43 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
44 |
+
return f'Instruct: {task_description}\nQuery: {query}'
|
45 |
+
|
46 |
+
|
47 |
+
# Each query must come with a one-sentence instruction that describes the task
|
48 |
+
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
49 |
+
queries = [
|
50 |
+
get_detailed_instruct(task, 'how much protein should a female eat'),
|
51 |
+
get_detailed_instruct(task, 'summit define')
|
52 |
+
]
|
53 |
+
# No need to add instruction for retrieval documents
|
54 |
+
documents = [
|
55 |
+
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
56 |
+
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
57 |
+
]
|
58 |
+
input_texts = queries + documents
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained('Haon-Chen/speed-embedding-7b-instruct')
|
61 |
+
model = AutoModel.from_pretrained('Haon-Chen/speed-embedding-7b-instruct')
|
62 |
+
|
63 |
+
max_length = 4096
|
64 |
+
# Tokenize the input texts
|
65 |
+
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt')
|
66 |
+
|
67 |
+
outputs = model(**batch_dict)
|
68 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
69 |
+
|
70 |
+
# normalize embeddings
|
71 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
72 |
+
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
73 |
+
print(scores.tolist())
|
74 |
+
```
|
75 |
+
|
76 |
+
## MTEB Benchmark Evaluation
|
77 |
+
|
78 |
+
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
|
79 |
+
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
|
80 |
+
|
81 |
+
## FAQ
|
82 |
+
|
83 |
+
**1. Do I need to add instructions to the query?**
|
84 |
+
|
85 |
+
Yes, this is how the model is trained, otherwise you will see a performance degradation.
|
86 |
+
The task definition should be a one-sentence instruction that describes the task.
|
87 |
+
This is a way to customize text embeddings for different scenarios through natural language instructions.
|
88 |
+
|
89 |
+
Please check out [unilm/e5/utils.py](https://github.com/microsoft/unilm/blob/9c0f1ff7ca53431fe47d2637dfe253643d94185b/e5/utils.py#L106) for instructions we used for evaluation.
|
90 |
+
|
91 |
+
On the other hand, there is no need to add instructions to the document side.
|
92 |
+
|
93 |
+
**2. Why are my reproduced results slightly different from reported in the model card?**
|
94 |
+
|
95 |
+
Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.
|
96 |
+
|
97 |
+
**3. Where are the LoRA-only weights?**
|
98 |
+
|
99 |
+
You can find the LoRA-only weights at [https://huggingface.co/Haon-Chen/speed-embedding-7b-instruct/tree/main/lora](https://huggingface.co/Haon-Chen/speed-embedding-7b-instruct/tree/main/lora).
|
100 |
+
|
101 |
+
## Citation
|
102 |
+
|
103 |
+
If you find our paper or models helpful, please consider cite as follows:
|
104 |
+
|
105 |
+
```bibtex
|
106 |
+
@article{chen2024little,
|
107 |
+
title={Little Giants: Synthesizing High-Quality Embedding Data at Scale},
|
108 |
+
author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng},
|
109 |
+
journal={arXiv preprint arXiv:2410.18634},
|
110 |
+
year={2024}
|
111 |
+
}
|
112 |
+
```
|
113 |
+
|
114 |
+
## Limitations
|
115 |
+
|
116 |
+
Using this model for inputs longer than 4096 tokens is not recommended.
|