File size: 11,330 Bytes
20b8520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
---

license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-base-word-by-word-quran-asr
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-word-by-word-quran-asr

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0415
- Wer: 0.0790

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 1000
- num_epochs: 20

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch   | Step  | Validation Loss | Wer    |

|:-------------:|:-------:|:-----:|:---------------:|:------:|

| 13.139        | 0.1291  | 500   | 3.2031          | 1.0    |

| 1.9653        | 0.2583  | 1000  | 0.5466          | 0.7806 |

| 0.4997        | 0.3874  | 1500  | 0.2171          | 0.3470 |

| 0.3479        | 0.5165  | 2000  | 0.1718          | 0.2932 |

| 0.2649        | 0.6457  | 2500  | 0.1434          | 0.2425 |

| 0.2554        | 0.7748  | 3000  | 0.1350          | 0.2478 |

| 0.2199        | 0.9039  | 3500  | 0.1047          | 0.1766 |

| 0.201         | 1.0331  | 4000  | 0.1079          | 0.1690 |

| 0.1832        | 1.1622  | 4500  | 0.0981          | 0.1637 |

| 0.1728        | 1.2913  | 5000  | 0.0984          | 0.1594 |

| 0.1608        | 1.4205  | 5500  | 0.0890          | 0.1598 |

| 0.1602        | 1.5496  | 6000  | 0.0786          | 0.1461 |

| 0.1565        | 1.6787  | 6500  | 0.0795          | 0.1315 |

| 0.1579        | 1.8079  | 7000  | 0.0888          | 0.1326 |

| 0.1537        | 1.9370  | 7500  | 0.0835          | 0.1377 |

| 0.1446        | 2.0661  | 8000  | 0.0674          | 0.1225 |

| 0.1313        | 2.1952  | 8500  | 0.0706          | 0.1255 |

| 0.1267        | 2.3244  | 9000  | 0.0658          | 0.1243 |

| 0.1385        | 2.4535  | 9500  | 0.0624          | 0.1170 |

| 0.1336        | 2.5826  | 10000 | 0.0648          | 0.1180 |

| 0.1189        | 2.7118  | 10500 | 0.0661          | 0.1189 |

| 0.1321        | 2.8409  | 11000 | 0.0716          | 0.1273 |

| 0.1168        | 2.9700  | 11500 | 0.0636          | 0.1200 |

| 0.1201        | 3.0992  | 12000 | 0.0615          | 0.1157 |

| 0.1144        | 3.2283  | 12500 | 0.0643          | 0.1223 |

| 0.1176        | 3.3574  | 13000 | 0.0690          | 0.1284 |

| 0.1153        | 3.4866  | 13500 | 0.0634          | 0.1208 |

| 0.1085        | 3.6157  | 14000 | 0.0594          | 0.1175 |

| 0.1176        | 3.7448  | 14500 | 0.0633          | 0.1151 |

| 0.118         | 3.8740  | 15000 | 0.0607          | 0.1062 |

| 0.1082        | 4.0031  | 15500 | 0.0564          | 0.1084 |

| 0.1028        | 4.1322  | 16000 | 0.0633          | 0.1215 |

| 0.1047        | 4.2614  | 16500 | 0.0579          | 0.1125 |

| 0.1015        | 4.3905  | 17000 | 0.0548          | 0.1098 |

| 0.101         | 4.5196  | 17500 | 0.0536          | 0.1088 |

| 0.0911        | 4.6488  | 18000 | 0.0526          | 0.0989 |

| 0.1016        | 4.7779  | 18500 | 0.0548          | 0.1073 |

| 0.0947        | 4.9070  | 19000 | 0.0521          | 0.1031 |

| 0.0933        | 5.0362  | 19500 | 0.0499          | 0.1024 |

| 0.0951        | 5.1653  | 20000 | 0.0545          | 0.1078 |

| 0.093         | 5.2944  | 20500 | 0.0521          | 0.1020 |

| 0.0888        | 5.4236  | 21000 | 0.0521          | 0.1037 |

| 0.0929        | 5.5527  | 21500 | 0.0536          | 0.1076 |

| 0.0983        | 5.6818  | 22000 | 0.0541          | 0.1047 |

| 0.0928        | 5.8110  | 22500 | 0.0526          | 0.1033 |

| 0.09          | 5.9401  | 23000 | 0.0506          | 0.1081 |

| 0.089         | 6.0692  | 23500 | 0.0529          | 0.1073 |

| 0.0785        | 6.1983  | 24000 | 0.0504          | 0.1015 |

| 0.0799        | 6.3275  | 24500 | 0.0538          | 0.1068 |

| 0.0833        | 6.4566  | 25000 | 0.0482          | 0.1027 |

| 0.0824        | 6.5857  | 25500 | 0.0503          | 0.0965 |

| 0.0801        | 6.7149  | 26000 | 0.0484          | 0.0962 |

| 0.0787        | 6.8440  | 26500 | 0.0483          | 0.0974 |

| 0.0786        | 6.9731  | 27000 | 0.0522          | 0.1008 |

| 0.0812        | 7.1023  | 27500 | 0.0475          | 0.0993 |

| 0.0736        | 7.2314  | 28000 | 0.0494          | 0.0932 |

| 0.0778        | 7.3605  | 28500 | 0.0488          | 0.0959 |

| 0.0742        | 7.4897  | 29000 | 0.0465          | 0.0921 |

| 0.077         | 7.6188  | 29500 | 0.0459          | 0.0997 |

| 0.0716        | 7.7479  | 30000 | 0.0466          | 0.0971 |

| 0.0768        | 7.8771  | 30500 | 0.0485          | 0.1004 |

| 0.0729        | 8.0062  | 31000 | 0.0479          | 0.0970 |

| 0.0784        | 8.1353  | 31500 | 0.0746          | 0.1563 |

| 0.0855        | 8.2645  | 32000 | 0.0513          | 0.0972 |

| 0.0743        | 8.3936  | 32500 | 0.0474          | 0.0953 |

| 0.0699        | 8.5227  | 33000 | 0.0457          | 0.0929 |

| 0.0711        | 8.6519  | 33500 | 0.0480          | 0.0924 |

| 0.0719        | 8.7810  | 34000 | 0.0455          | 0.0909 |

| 0.0723        | 8.9101  | 34500 | 0.0442          | 0.0924 |

| 0.0715        | 9.0393  | 35000 | 0.0453          | 0.0945 |

| 0.0664        | 9.1684  | 35500 | 0.0458          | 0.0903 |

| 0.0636        | 9.2975  | 36000 | 0.0450          | 0.0929 |

| 0.0665        | 9.4267  | 36500 | 0.0461          | 0.0909 |

| 0.0668        | 9.5558  | 37000 | 0.0477          | 0.0923 |

| 0.0631        | 9.6849  | 37500 | 0.0463          | 0.0900 |

| 0.0686        | 9.8140  | 38000 | 0.0481          | 0.0983 |

| 0.0645        | 9.9432  | 38500 | 0.0591          | 0.0938 |

| 0.0661        | 10.0723 | 39000 | 0.0464          | 0.0912 |

| 0.0648        | 10.2014 | 39500 | 0.0458          | 0.0902 |

| 0.0597        | 10.3306 | 40000 | 0.0460          | 0.0899 |

| 0.0605        | 10.4597 | 40500 | 0.0465          | 0.0868 |

| 0.0623        | 10.5888 | 41000 | 0.0471          | 0.0909 |

| 0.065         | 10.7180 | 41500 | 0.0766          | 0.1173 |

| 0.0674        | 10.8471 | 42000 | 0.0469          | 0.0903 |

| 0.0631        | 10.9762 | 42500 | 0.0436          | 0.0905 |

| 0.0596        | 11.1054 | 43000 | 0.0472          | 0.0903 |

| 0.0612        | 11.2345 | 43500 | 0.0436          | 0.0869 |

| 0.0598        | 11.3636 | 44000 | 0.0451          | 0.0883 |

| 0.0637        | 11.4928 | 44500 | 0.0437          | 0.0909 |

| 0.0556        | 11.6219 | 45000 | 0.0440          | 0.0870 |

| 0.0625        | 11.7510 | 45500 | 0.0469          | 0.0941 |

| 0.0573        | 11.8802 | 46000 | 0.0461          | 0.0903 |

| 0.0583        | 12.0093 | 46500 | 0.0454          | 0.0901 |

| 0.0587        | 12.1384 | 47000 | 0.0440          | 0.0907 |

| 0.0598        | 12.2676 | 47500 | 0.0440          | 0.0878 |

| 0.0578        | 12.3967 | 48000 | 0.0458          | 0.0900 |

| 0.0549        | 12.5258 | 48500 | 0.0441          | 0.0863 |

| 0.0505        | 12.6550 | 49000 | 0.0436          | 0.0883 |

| 0.0528        | 12.7841 | 49500 | 0.0412          | 0.0855 |

| 0.0498        | 12.9132 | 50000 | 0.0430          | 0.0851 |

| 0.0538        | 13.0424 | 50500 | 0.0433          | 0.0856 |

| 0.0503        | 13.1715 | 51000 | 0.0445          | 0.0846 |

| 0.0529        | 13.3006 | 51500 | 0.0422          | 0.0830 |

| 0.0513        | 13.4298 | 52000 | 0.0415          | 0.0871 |

| 0.0507        | 13.5589 | 52500 | 0.0438          | 0.0862 |

| 0.0507        | 13.6880 | 53000 | 0.0419          | 0.0818 |

| 0.0537        | 13.8171 | 53500 | 0.0473          | 0.0870 |

| 0.053         | 13.9463 | 54000 | 0.0415          | 0.0834 |

| 0.0472        | 14.0754 | 54500 | 0.0427          | 0.0839 |

| 0.0473        | 14.2045 | 55000 | 0.0436          | 0.0855 |

| 0.0504        | 14.3337 | 55500 | 0.0418          | 0.0823 |

| 0.0496        | 14.4628 | 56000 | 0.0425          | 0.0845 |

| 0.0474        | 14.5919 | 56500 | 0.0432          | 0.0844 |

| 0.0462        | 14.7211 | 57000 | 0.0429          | 0.0851 |

| 0.0499        | 14.8502 | 57500 | 0.0426          | 0.0839 |

| 0.0507        | 14.9793 | 58000 | 0.0425          | 0.0821 |

| 0.0424        | 15.1085 | 58500 | 0.0442          | 0.0838 |

| 0.0463        | 15.2376 | 59000 | 0.0422          | 0.0859 |

| 0.0465        | 15.3667 | 59500 | 0.0439          | 0.0827 |

| 0.0483        | 15.4959 | 60000 | 0.0436          | 0.0852 |

| 0.0498        | 15.625  | 60500 | 0.0424          | 0.0859 |

| 0.047         | 15.7541 | 61000 | 0.0424          | 0.0853 |

| 0.0466        | 15.8833 | 61500 | 0.0436          | 0.0858 |

| 0.0487        | 16.0124 | 62000 | 0.0423          | 0.0832 |

| 0.0414        | 16.1415 | 62500 | 0.0429          | 0.0845 |

| 0.0447        | 16.2707 | 63000 | 0.0418          | 0.0832 |

| 0.0404        | 16.3998 | 63500 | 0.0428          | 0.0817 |

| 0.0419        | 16.5289 | 64000 | 0.0428          | 0.0825 |

| 0.0433        | 16.6581 | 64500 | 0.0415          | 0.0825 |

| 0.0429        | 16.7872 | 65000 | 0.0423          | 0.0815 |

| 0.0415        | 16.9163 | 65500 | 0.0408          | 0.0804 |

| 0.0422        | 17.0455 | 66000 | 0.0424          | 0.0817 |

| 0.0404        | 17.1746 | 66500 | 0.0430          | 0.0809 |

| 0.0387        | 17.3037 | 67000 | 0.0424          | 0.0816 |

| 0.0413        | 17.4329 | 67500 | 0.0414          | 0.0805 |

| 0.039         | 17.5620 | 68000 | 0.0414          | 0.0828 |

| 0.0394        | 17.6911 | 68500 | 0.0418          | 0.0799 |

| 0.0419        | 17.8202 | 69000 | 0.0405          | 0.0801 |

| 0.0417        | 17.9494 | 69500 | 0.0412          | 0.0793 |

| 0.0383        | 18.0785 | 70000 | 0.0431          | 0.0799 |

| 0.0393        | 18.2076 | 70500 | 0.0426          | 0.0817 |

| 0.0364        | 18.3368 | 71000 | 0.0426          | 0.0795 |

| 0.0379        | 18.4659 | 71500 | 0.0419          | 0.0799 |

| 0.0359        | 18.5950 | 72000 | 0.0419          | 0.0796 |

| 0.0368        | 18.7242 | 72500 | 0.0419          | 0.0794 |

| 0.0394        | 18.8533 | 73000 | 0.0414          | 0.0800 |

| 0.0375        | 18.9824 | 73500 | 0.0418          | 0.0791 |

| 0.0381        | 19.1116 | 74000 | 0.0420          | 0.0794 |

| 0.039         | 19.2407 | 74500 | 0.0415          | 0.0794 |

| 0.0364        | 19.3698 | 75000 | 0.0419          | 0.0795 |

| 0.0334        | 19.4990 | 75500 | 0.0421          | 0.0796 |

| 0.0352        | 19.6281 | 76000 | 0.0415          | 0.0793 |

| 0.0354        | 19.7572 | 76500 | 0.0416          | 0.0787 |

| 0.0362        | 19.8864 | 77000 | 0.0415          | 0.0790 |





### Framework versions



- Transformers 4.42.3

- Pytorch 2.3.1+cu121

- Datasets 2.20.0

- Tokenizers 0.19.1