--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: HamzaSidhu786/distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # HamzaSidhu786/distilhubert-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6028 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0751 | 1.0 | 113 | 2.0343 | 0.6 | | 1.5734 | 2.0 | 226 | 1.6338 | 0.58 | | 1.3801 | 3.0 | 339 | 1.2674 | 0.7 | | 1.0384 | 4.0 | 452 | 1.1376 | 0.68 | | 0.973 | 5.0 | 565 | 0.9849 | 0.73 | | 1.0033 | 6.0 | 678 | 0.7686 | 0.76 | | 0.6347 | 7.0 | 791 | 0.5909 | 0.87 | | 0.6537 | 8.0 | 904 | 0.9489 | 0.75 | | 0.359 | 9.0 | 1017 | 0.7478 | 0.81 | | 0.2268 | 10.0 | 1130 | 0.6247 | 0.84 | | 0.2674 | 11.0 | 1243 | 0.6437 | 0.84 | | 0.2237 | 12.0 | 1356 | 0.7997 | 0.81 | | 0.1418 | 13.0 | 1469 | 0.7738 | 0.84 | | 0.1201 | 14.0 | 1582 | 0.5696 | 0.87 | | 0.019 | 15.0 | 1695 | 0.8173 | 0.84 | | 0.0175 | 16.0 | 1808 | 0.6395 | 0.88 | | 0.16 | 17.0 | 1921 | 0.6062 | 0.87 | | 0.0137 | 18.0 | 2034 | 0.5422 | 0.9 | | 0.0127 | 19.0 | 2147 | 0.6421 | 0.88 | | 0.0129 | 20.0 | 2260 | 0.6028 | 0.88 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1