File size: 1,958 Bytes
5cc46ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
base_model: Haleshot/Mathmate-7B-DELLA-ORPO
tags:
- finetuned
- orpo
- everyday-conversations
datasets:
- HuggingFaceTB/everyday-conversations-llama3.1-2k
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
---
# Mathmate-7B-DELLA-ORPO-D
Mathmate-7B-DELLA-ORPO-D is a finetuned version of [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co./Haleshot/Mathmate-7B-DELLA-ORPO) using the ORPO method, combined with a LoRA adapter trained on everyday conversations.
## Model Details
- **Base Model:** [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co./Haleshot/Mathmate-7B-DELLA-ORPO)
- **Training Dataset:** [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co./datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k)
## Dataset
The model incorporates training on the [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co./datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k) dataset, which focuses on everyday conversations and small talk.
## Usage
Here's an example of how to use the model:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "Haleshot/Mathmate-7B-DELLA-ORPO-ORPO-D"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
def generate_response(prompt, max_length=512):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
prompt = "Let's have a casual conversation about weekend plans."
response = generate_response(prompt)
print(response)
```
## Acknowledgements
Thanks to the HuggingFaceTB team for providing the everyday conversations dataset used in this finetuning process. |