--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset-SBDtoy results: [] --- # videomae-base-finetuned-ucf101-subset-SBDtoy This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8346 - Accuracy: 0.6275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7634 | 0.03 | 41 | 0.6320 | 0.5882 | | 0.7445 | 1.03 | 82 | 1.4198 | 0.5686 | | 0.4931 | 2.03 | 123 | 1.3689 | 0.5686 | | 0.7206 | 3.03 | 164 | 1.3282 | 0.5882 | | 0.735 | 4.03 | 205 | 2.0849 | 0.5686 | | 1.769 | 5.03 | 246 | 1.0332 | 0.6078 | | 0.9494 | 6.03 | 287 | 2.1307 | 0.6078 | | 0.3857 | 7.03 | 328 | 2.5985 | 0.6078 | | 0.3639 | 8.03 | 369 | 2.2300 | 0.6078 | | 0.6456 | 9.03 | 410 | 1.8992 | 0.6078 | | 0.9483 | 10.03 | 451 | 1.9556 | 0.6078 | | 0.4518 | 11.03 | 492 | 1.8346 | 0.6275 | | 0.9109 | 12.03 | 533 | 1.9937 | 0.6078 | | 0.5441 | 13.03 | 574 | 1.4013 | 0.6078 | | 0.4035 | 14.03 | 615 | 1.9078 | 0.6078 | | 0.1713 | 15.03 | 656 | 2.0803 | 0.5882 | | 0.0542 | 16.03 | 697 | 2.5432 | 0.6078 | | 0.3084 | 17.03 | 738 | 2.5753 | 0.6078 | | 0.2476 | 18.03 | 779 | 2.4253 | 0.6275 | | 0.006 | 19.03 | 820 | 2.4320 | 0.6078 | | 0.0021 | 20.03 | 861 | 2.7182 | 0.6078 | | 0.008 | 21.03 | 902 | 2.7711 | 0.5882 | | 0.0011 | 22.03 | 943 | 2.8089 | 0.5882 | | 0.7546 | 23.03 | 984 | 2.8142 | 0.6078 | | 0.0006 | 24.03 | 1025 | 2.8796 | 0.6078 | | 0.0008 | 25.03 | 1066 | 2.8486 | 0.6078 | | 0.1745 | 26.03 | 1107 | 2.8475 | 0.6078 | | 0.5421 | 27.03 | 1148 | 2.8462 | 0.6078 | | 0.1233 | 28.03 | 1189 | 2.8324 | 0.6078 | | 0.1298 | 29.01 | 1200 | 2.8332 | 0.6078 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.0.1 - Datasets 2.18.0 - Tokenizers 0.15.2