HXW commited on
Commit
7083b28
·
1 Parent(s): 3f6ff3e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 232.16 +/- 29.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f932b717940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f932b7179d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f932b717a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f932b717af0>", "_build": "<function ActorCriticPolicy._build at 0x7f932b717b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f932b717c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f932b717ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f932b717d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f932b717dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f932b717e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f932b717ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f932b717f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f932b713690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677677393132658399, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpW0D2GToE/8UQWPb3vjb7YsaU9+nppvQAAAAAAAAAAABk/Pa4P2rpuu0U9Vq/9vS+HIbyL0Sa/AACAPwAAgD/zfZG9jw4punL/yDnczUy2tVuaOStD6bgAAIA/AACAP00gWL4uEcu8lpEbugz1o7jARDU+lL5LOQAAgD8AAIA/866JPVyPYbqaZuU6zfdAtJaQNrsYhgO6AACAPwAAgD9mIg+8uOb1ufuig7l6B1q12qiFObHklzgAAIA/AACAP5pdUjyP2kq6BmKUO4l8nDceWCO7tVeAugAAgD8AAIA/Wsj9PXaMXz+VC7e919BdvkaV2jypggi9AAAAAAAAAAAAioi97BnKuTJVZzk66HI0SJRBO5DcibgAAIA/AACAPwY4RL5/csU+R74sPRx6Vb4fXn29liFjPQAAAAAAAAAAwCJTPjgZwrsod8u9Lr/qvTqxBL3yB8u+AACAPwAAgD9msDo9H325uZ5IJDrvNlg0FTiYOt4VQ7kAAIA/AACAPy1lJb4cEDC8GkAYu/kaB7lRSJs9gcM3OgAAgD8AAIA/M3aIPVLQnbmCgts6J2ENNmp5WjtO4f65AACAPwAAgD/Nccg8PZoFub6yk7tnhEk316V7OjDwurYAAIA/AACAP3Pc4b0Kl3y50YwauWnKarRJ+gi7gnY0OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv7oqUIvFYUCUhpRSlIwBbJRN6AOMAXSUR0CX2S3n6l+FdX2UKGgGaAloD0MI/RTHgVduZECUhpRSlGgVTegDaBZHQJfaPpD/lyR1fZQoaAZoCWgPQwglsDkHzzhgQJSGlFKUaBVN6ANoFkdAl9vfnGKhtnV9lChoBmgJaA9DCLow0otaFGFAlIaUUpRoFU3oA2gWR0CX3N0ZWJaadX2UKGgGaAloD0MI61T5nhHwbECUhpRSlGgVTa0DaBZHQJfeGoFV1fV1fZQoaAZoCWgPQwhpccYwJ8JgQJSGlFKUaBVN6ANoFkdAl97IVVPva3V9lChoBmgJaA9DCKRt/InKTmBAlIaUUpRoFU3oA2gWR0CX39Ue+23KdX2UKGgGaAloD0MID0JAvoQHZECUhpRSlGgVTegDaBZHQJfm6NZNfw91fZQoaAZoCWgPQwgxPzc0ZVtbQJSGlFKUaBVN6ANoFkdAl/U/JRwZO3V9lChoBmgJaA9DCGCuRQvQ2mFAlIaUUpRoFU3oA2gWR0CX9UMhouf3dX2UKGgGaAloD0MI1sdD313sYECUhpRSlGgVTegDaBZHQJgBp0aIeo11fZQoaAZoCWgPQwiPjUC8LtZhQJSGlFKUaBVN6ANoFkdAmANRzvJA+3V9lChoBmgJaA9DCFb0h2ae5WFAlIaUUpRoFU3oA2gWR0CYLcGtZFG5dX2UKGgGaAloD0MIxR9FnXlEcUCUhpRSlGgVTbkCaBZHQJgt/1WbPQh1fZQoaAZoCWgPQwh5WRML/M1jQJSGlFKUaBVN6ANoFkdAmC/+7UXpGHV9lChoBmgJaA9DCMISDygbdWFAlIaUUpRoFU3oA2gWR0CYNT+sYEW7dX2UKGgGaAloD0MIIQa69gVVYECUhpRSlGgVTegDaBZHQJhEwDr7fpF1fZQoaAZoCWgPQwgDfSJPkrVdQJSGlFKUaBVN6ANoFkdAmEWmnjyWiXV9lChoBmgJaA9DCPm7d9SYyWRAlIaUUpRoFU3oA2gWR0CYRxqCpWFOdX2UKGgGaAloD0MIcqPIWsPQYECUhpRSlGgVTegDaBZHQJhJhNZeRgZ1fZQoaAZoCWgPQwjEBaBRumtkQJSGlFKUaBVN6ANoFkdAmErx8D0UXnV9lChoBmgJaA9DCG8Sg8DK8SjAlIaUUpRoFU0yAWgWR0CYTEGRmseXdX2UKGgGaAloD0MItU5cjlcTW0CUhpRSlGgVTegDaBZHQJhM8/bCaZx1fZQoaAZoCWgPQwguAfin1HxjQJSGlFKUaBVN6ANoFkdAmE4P+GXXy3V9lChoBmgJaA9DCCzvqgdM32xAlIaUUpRoFU2RA2gWR0CYT62BJ7LMdX2UKGgGaAloD0MIy/Pg7qxNFUCUhpRSlGgVTToBaBZHQJhdcY3vQWx1fZQoaAZoCWgPQwjz4y8t6v5cQJSGlFKUaBVN6ANoFkdAmGNK3d9DyHV9lChoBmgJaA9DCJAy4gJQCWFAlIaUUpRoFU3oA2gWR0CYY0zr/sE8dX2UKGgGaAloD0MIAimxa3vbY0CUhpRSlGgVTegDaBZHQJhsvr7fpEB1fZQoaAZoCWgPQwh7n6pCg2FmQJSGlFKUaBVN6ANoFkdAmG4KM3qA0HV9lChoBmgJaA9DCIP5K2TubHBAlIaUUpRoFU20AmgWR0CYhMos7MgVdX2UKGgGaAloD0MI6Ih8l9IrYkCUhpRSlGgVTegDaBZHQJidf2rXDm91fZQoaAZoCWgPQwisOqsF9qhgQJSGlFKUaBVN6ANoFkdAmJ99GAkLQXV9lChoBmgJaA9DCK6CGOjaultAlIaUUpRoFU3oA2gWR0CYpLFFlTWHdX2UKGgGaAloD0MIhBCQLyFCYkCUhpRSlGgVTegDaBZHQJivCoWHk951fZQoaAZoCWgPQwj9hLNby2pZQJSGlFKUaBVN6ANoFkdAmK+hcAzYVnV9lChoBmgJaA9DCIRkARO4QGNAlIaUUpRoFU3oA2gWR0CYstQJ5VwQdX2UKGgGaAloD0MIOGVuvhFcZECUhpRSlGgVTegDaBZHQJi2OWgOBlN1fZQoaAZoCWgPQwh7Eticg1FiQJSGlFKUaBVN6ANoFkdAmLdEDZDiO3V9lChoBmgJaA9DCCC4yhMI+2BAlIaUUpRoFU3oA2gWR0CYuOvzvqkedX2UKGgGaAloD0MI2C0CY32fZUCUhpRSlGgVTegDaBZHQJi7Wu0TlDF1fZQoaAZoCWgPQwgKuyh6YLdgQJSGlFKUaBVN6ANoFkdAmMykmdAgPnV9lChoBmgJaA9DCLH9ZIyPMWNAlIaUUpRoFU3oA2gWR0CY0e9t/FzddX2UKGgGaAloD0MImmA41zCaXkCUhpRSlGgVTegDaBZHQJjR8dZJTVF1fZQoaAZoCWgPQwh4J58e2wNeQJSGlFKUaBVN6ANoFkdAmNqkwevIO3V9lChoBmgJaA9DCNAqM6X1tWNAlIaUUpRoFU3oA2gWR0CY27lHBk7PdX2UKGgGaAloD0MIZqIIqdu7YkCUhpRSlGgVTegDaBZHQJjry0JF9a51fZQoaAZoCWgPQwjH2AkvwWtfQJSGlFKUaBVN6ANoFkdAmO2bFjurqHV9lChoBmgJaA9DCJlnJa34HWNAlIaUUpRoFU3oA2gWR0CZCk9roGILdX2UKGgGaAloD0MIxm00gDcmYUCUhpRSlGgVTegDaBZHQJkOy6kIomZ1fZQoaAZoCWgPQwhYy52ZYKFkQJSGlFKUaBVN6ANoFkdAmRhlrl/6PHV9lChoBmgJaA9DCEn0MorltWBAlIaUUpRoFU3oA2gWR0CZGPLGaQV9dX2UKGgGaAloD0MIgJ9x4UAFZkCUhpRSlGgVTegDaBZHQJkbUEOiFkB1fZQoaAZoCWgPQwhjQswl1epiQJSGlFKUaBVN6ANoFkdAmR1XmvGIbnV9lChoBmgJaA9DCNHoDmJnOWJAlIaUUpRoFU3oA2gWR0CZHfxmCiAUdX2UKGgGaAloD0MImrFoOru9YkCUhpRSlGgVTegDaBZHQJke+zlcQiB1fZQoaAZoCWgPQwiu1onLcVRhQJSGlFKUaBVN6ANoFkdAmSClzEJjUnV9lChoBmgJaA9DCLFppRDI61tAlIaUUpRoFU3oA2gWR0CZL2Dbah6CdX2UKGgGaAloD0MIyVUsflM9YkCUhpRSlGgVTegDaBZHQJk3ChWYF7l1fZQoaAZoCWgPQwj03EJXIp1bQJSGlFKUaBVN6ANoFkdAmTcPSc9W63V9lChoBmgJaA9DCG4yqgzjgWVAlIaUUpRoFU3oA2gWR0CZQxyjHn2adX2UKGgGaAloD0MIknU4uko8Y0CUhpRSlGgVTegDaBZHQJlETuqm0md1fZQoaAZoCWgPQwjkEHFzqhBgQJSGlFKUaBVN6ANoFkdAmVWSqU/wAnV9lChoBmgJaA9DCK4tPC8VI2FAlIaUUpRoFU3oA2gWR0CZV4zXz19OdX2UKGgGaAloD0MIlX8tr1wXVECUhpRSlGgVTegDaBZHQJlZpa+vhZR1fZQoaAZoCWgPQwgg0QSKWBFkQJSGlFKUaBVN6ANoFkdAmXiYFA3T/nV9lChoBmgJaA9DCGjsSzYeE11AlIaUUpRoFU3oA2gWR0CZhOfG+9J0dX2UKGgGaAloD0MIxa2CGGizZECUhpRSlGgVTegDaBZHQJmFhaNdZ7p1fZQoaAZoCWgPQwhFaAQb17xmQJSGlFKUaBVN6ANoFkdAmYg7DZUT+XV9lChoBmgJaA9DCHAk0GBToWZAlIaUUpRoFU3oA2gWR0CZiol41P30dX2UKGgGaAloD0MI/PuMCwdwZECUhpRSlGgVTegDaBZHQJmLO6cy31B1fZQoaAZoCWgPQwjiWYKMANVlQJSGlFKUaBVN6ANoFkdAmYxgzP8htHV9lChoBmgJaA9DCOi9MQSASWBAlIaUUpRoFU3oA2gWR0CZjh8gZCOWdX2UKGgGaAloD0MIxsTm49qPX0CUhpRSlGgVTegDaBZHQJmc/UwztTl1fZQoaAZoCWgPQwhU/rW88k9lQJSGlFKUaBVN6ANoFkdAmaM801qFiHV9lChoBmgJaA9DCNbgfVUuiGNAlIaUUpRoFU3oA2gWR0CZoz9kjHGTdX2UKGgGaAloD0MIm3PwTGiGWUCUhpRSlGgVTegDaBZHQJmyD8pCrtF1fZQoaAZoCWgPQwhbJy7HKzFaQJSGlFKUaBVN6ANoFkdAmbPnZsbednV9lChoBmgJaA9DCA01CknmCGhAlIaUUpRoFU2YAWgWR0CZs/C3gDRudX2UKGgGaAloD0MIUWhZ948xOECUhpRSlGgVTR0BaBZHQJnCY14xDb91fZQoaAZoCWgPQwhHH/MBASpgQJSGlFKUaBVN6ANoFkdAmceRcVxjrnV9lChoBmgJaA9DCHsuU5Pg5l5AlIaUUpRoFU3oA2gWR0CZyY72criEdX2UKGgGaAloD0MIz4WRXtRuWECUhpRSlGgVTegDaBZHQJnLpWgezUt1fZQoaAZoCWgPQwhQ/u4dtbVjQJSGlFKUaBVN6ANoFkdAmefD81n/UHV9lChoBmgJaA9DCAyUFFgAMl9AlIaUUpRoFU3oA2gWR0CZ96vJiiItdX2UKGgGaAloD0MINZnxttLWV0CUhpRSlGgVTegDaBZHQJn4VgDzRQd1fZQoaAZoCWgPQwh0fLQ4Y2pZQJSGlFKUaBVN6ANoFkdAmfs8urZJ1HV9lChoBmgJaA9DCDsYsU+AamFAlIaUUpRoFU3oA2gWR0CZ/blCCz1LdX2UKGgGaAloD0MIxouFIfJ+YkCUhpRSlGgVTegDaBZHQJn+fnmq5sl1fZQoaAZoCWgPQwg3UrZIWhBhQJSGlFKUaBVN6ANoFkdAmf+zeoDPnnV9lChoBmgJaA9DCLw8nStK1TJAlIaUUpRoFU1DAWgWR0CaAN8F6iTMdX2UKGgGaAloD0MIlIYahSToYUCUhpRSlGgVTegDaBZHQJoQxLZi/fx1fZQoaAZoCWgPQwhDVUyln7VhQJSGlFKUaBVN6ANoFkdAmhbeCoS+QHV9lChoBmgJaA9DCJxPHauUlifAlIaUUpRoFU04AWgWR0CaF6eF+NLldX2UKGgGaAloD0MIgIC1atffX0CUhpRSlGgVTegDaBZHQJoh3jXFtKt1fZQoaAZoCWgPQwhBuAIKdZJhQJSGlFKUaBVN6ANoFkdAmiOHBUJfIHV9lChoBmgJaA9DCHmxMETO3WJAlIaUUpRoFU3oA2gWR0CaI5FyaNModX2UKGgGaAloD0MIZK2h1F5uVECUhpRSlGgVTegDaBZHQJo0Rv73wkR1fZQoaAZoCWgPQwhrLGFtDDJmQJSGlFKUaBVN6ANoFkdAmjj72USqVHV9lChoBmgJaA9DCAytTs7Qd2BAlIaUUpRoFU3oA2gWR0CaOsQaaTfSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc8651268ddbbbfea7ce0dc44c26566ba140b49cbbdcaa9e4a0ce47bf737a00e
3
+ size 147424
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f932b717940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f932b7179d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f932b717a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f932b717af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f932b717b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f932b717c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f932b717ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f932b717d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f932b717dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f932b717e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f932b717ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f932b717f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f932b713690>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677677393132658399,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpW0D2GToE/8UQWPb3vjb7YsaU9+nppvQAAAAAAAAAAABk/Pa4P2rpuu0U9Vq/9vS+HIbyL0Sa/AACAPwAAgD/zfZG9jw4punL/yDnczUy2tVuaOStD6bgAAIA/AACAP00gWL4uEcu8lpEbugz1o7jARDU+lL5LOQAAgD8AAIA/866JPVyPYbqaZuU6zfdAtJaQNrsYhgO6AACAPwAAgD9mIg+8uOb1ufuig7l6B1q12qiFObHklzgAAIA/AACAP5pdUjyP2kq6BmKUO4l8nDceWCO7tVeAugAAgD8AAIA/Wsj9PXaMXz+VC7e919BdvkaV2jypggi9AAAAAAAAAAAAioi97BnKuTJVZzk66HI0SJRBO5DcibgAAIA/AACAPwY4RL5/csU+R74sPRx6Vb4fXn29liFjPQAAAAAAAAAAwCJTPjgZwrsod8u9Lr/qvTqxBL3yB8u+AACAPwAAgD9msDo9H325uZ5IJDrvNlg0FTiYOt4VQ7kAAIA/AACAPy1lJb4cEDC8GkAYu/kaB7lRSJs9gcM3OgAAgD8AAIA/M3aIPVLQnbmCgts6J2ENNmp5WjtO4f65AACAPwAAgD/Nccg8PZoFub6yk7tnhEk316V7OjDwurYAAIA/AACAP3Pc4b0Kl3y50YwauWnKarRJ+gi7gnY0OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv7oqUIvFYUCUhpRSlIwBbJRN6AOMAXSUR0CX2S3n6l+FdX2UKGgGaAloD0MI/RTHgVduZECUhpRSlGgVTegDaBZHQJfaPpD/lyR1fZQoaAZoCWgPQwglsDkHzzhgQJSGlFKUaBVN6ANoFkdAl9vfnGKhtnV9lChoBmgJaA9DCLow0otaFGFAlIaUUpRoFU3oA2gWR0CX3N0ZWJaadX2UKGgGaAloD0MI61T5nhHwbECUhpRSlGgVTa0DaBZHQJfeGoFV1fV1fZQoaAZoCWgPQwhpccYwJ8JgQJSGlFKUaBVN6ANoFkdAl97IVVPva3V9lChoBmgJaA9DCKRt/InKTmBAlIaUUpRoFU3oA2gWR0CX39Ue+23KdX2UKGgGaAloD0MID0JAvoQHZECUhpRSlGgVTegDaBZHQJfm6NZNfw91fZQoaAZoCWgPQwgxPzc0ZVtbQJSGlFKUaBVN6ANoFkdAl/U/JRwZO3V9lChoBmgJaA9DCGCuRQvQ2mFAlIaUUpRoFU3oA2gWR0CX9UMhouf3dX2UKGgGaAloD0MI1sdD313sYECUhpRSlGgVTegDaBZHQJgBp0aIeo11fZQoaAZoCWgPQwiPjUC8LtZhQJSGlFKUaBVN6ANoFkdAmANRzvJA+3V9lChoBmgJaA9DCFb0h2ae5WFAlIaUUpRoFU3oA2gWR0CYLcGtZFG5dX2UKGgGaAloD0MIxR9FnXlEcUCUhpRSlGgVTbkCaBZHQJgt/1WbPQh1fZQoaAZoCWgPQwh5WRML/M1jQJSGlFKUaBVN6ANoFkdAmC/+7UXpGHV9lChoBmgJaA9DCMISDygbdWFAlIaUUpRoFU3oA2gWR0CYNT+sYEW7dX2UKGgGaAloD0MIIQa69gVVYECUhpRSlGgVTegDaBZHQJhEwDr7fpF1fZQoaAZoCWgPQwgDfSJPkrVdQJSGlFKUaBVN6ANoFkdAmEWmnjyWiXV9lChoBmgJaA9DCPm7d9SYyWRAlIaUUpRoFU3oA2gWR0CYRxqCpWFOdX2UKGgGaAloD0MIcqPIWsPQYECUhpRSlGgVTegDaBZHQJhJhNZeRgZ1fZQoaAZoCWgPQwjEBaBRumtkQJSGlFKUaBVN6ANoFkdAmErx8D0UXnV9lChoBmgJaA9DCG8Sg8DK8SjAlIaUUpRoFU0yAWgWR0CYTEGRmseXdX2UKGgGaAloD0MItU5cjlcTW0CUhpRSlGgVTegDaBZHQJhM8/bCaZx1fZQoaAZoCWgPQwguAfin1HxjQJSGlFKUaBVN6ANoFkdAmE4P+GXXy3V9lChoBmgJaA9DCCzvqgdM32xAlIaUUpRoFU2RA2gWR0CYT62BJ7LMdX2UKGgGaAloD0MIy/Pg7qxNFUCUhpRSlGgVTToBaBZHQJhdcY3vQWx1fZQoaAZoCWgPQwjz4y8t6v5cQJSGlFKUaBVN6ANoFkdAmGNK3d9DyHV9lChoBmgJaA9DCJAy4gJQCWFAlIaUUpRoFU3oA2gWR0CYY0zr/sE8dX2UKGgGaAloD0MIAimxa3vbY0CUhpRSlGgVTegDaBZHQJhsvr7fpEB1fZQoaAZoCWgPQwh7n6pCg2FmQJSGlFKUaBVN6ANoFkdAmG4KM3qA0HV9lChoBmgJaA9DCIP5K2TubHBAlIaUUpRoFU20AmgWR0CYhMos7MgVdX2UKGgGaAloD0MI6Ih8l9IrYkCUhpRSlGgVTegDaBZHQJidf2rXDm91fZQoaAZoCWgPQwisOqsF9qhgQJSGlFKUaBVN6ANoFkdAmJ99GAkLQXV9lChoBmgJaA9DCK6CGOjaultAlIaUUpRoFU3oA2gWR0CYpLFFlTWHdX2UKGgGaAloD0MIhBCQLyFCYkCUhpRSlGgVTegDaBZHQJivCoWHk951fZQoaAZoCWgPQwj9hLNby2pZQJSGlFKUaBVN6ANoFkdAmK+hcAzYVnV9lChoBmgJaA9DCIRkARO4QGNAlIaUUpRoFU3oA2gWR0CYstQJ5VwQdX2UKGgGaAloD0MIOGVuvhFcZECUhpRSlGgVTegDaBZHQJi2OWgOBlN1fZQoaAZoCWgPQwh7Eticg1FiQJSGlFKUaBVN6ANoFkdAmLdEDZDiO3V9lChoBmgJaA9DCCC4yhMI+2BAlIaUUpRoFU3oA2gWR0CYuOvzvqkedX2UKGgGaAloD0MI2C0CY32fZUCUhpRSlGgVTegDaBZHQJi7Wu0TlDF1fZQoaAZoCWgPQwgKuyh6YLdgQJSGlFKUaBVN6ANoFkdAmMykmdAgPnV9lChoBmgJaA9DCLH9ZIyPMWNAlIaUUpRoFU3oA2gWR0CY0e9t/FzddX2UKGgGaAloD0MImmA41zCaXkCUhpRSlGgVTegDaBZHQJjR8dZJTVF1fZQoaAZoCWgPQwh4J58e2wNeQJSGlFKUaBVN6ANoFkdAmNqkwevIO3V9lChoBmgJaA9DCNAqM6X1tWNAlIaUUpRoFU3oA2gWR0CY27lHBk7PdX2UKGgGaAloD0MIZqIIqdu7YkCUhpRSlGgVTegDaBZHQJjry0JF9a51fZQoaAZoCWgPQwjH2AkvwWtfQJSGlFKUaBVN6ANoFkdAmO2bFjurqHV9lChoBmgJaA9DCJlnJa34HWNAlIaUUpRoFU3oA2gWR0CZCk9roGILdX2UKGgGaAloD0MIxm00gDcmYUCUhpRSlGgVTegDaBZHQJkOy6kIomZ1fZQoaAZoCWgPQwhYy52ZYKFkQJSGlFKUaBVN6ANoFkdAmRhlrl/6PHV9lChoBmgJaA9DCEn0MorltWBAlIaUUpRoFU3oA2gWR0CZGPLGaQV9dX2UKGgGaAloD0MIgJ9x4UAFZkCUhpRSlGgVTegDaBZHQJkbUEOiFkB1fZQoaAZoCWgPQwhjQswl1epiQJSGlFKUaBVN6ANoFkdAmR1XmvGIbnV9lChoBmgJaA9DCNHoDmJnOWJAlIaUUpRoFU3oA2gWR0CZHfxmCiAUdX2UKGgGaAloD0MImrFoOru9YkCUhpRSlGgVTegDaBZHQJke+zlcQiB1fZQoaAZoCWgPQwiu1onLcVRhQJSGlFKUaBVN6ANoFkdAmSClzEJjUnV9lChoBmgJaA9DCLFppRDI61tAlIaUUpRoFU3oA2gWR0CZL2Dbah6CdX2UKGgGaAloD0MIyVUsflM9YkCUhpRSlGgVTegDaBZHQJk3ChWYF7l1fZQoaAZoCWgPQwj03EJXIp1bQJSGlFKUaBVN6ANoFkdAmTcPSc9W63V9lChoBmgJaA9DCG4yqgzjgWVAlIaUUpRoFU3oA2gWR0CZQxyjHn2adX2UKGgGaAloD0MIknU4uko8Y0CUhpRSlGgVTegDaBZHQJlETuqm0md1fZQoaAZoCWgPQwjkEHFzqhBgQJSGlFKUaBVN6ANoFkdAmVWSqU/wAnV9lChoBmgJaA9DCK4tPC8VI2FAlIaUUpRoFU3oA2gWR0CZV4zXz19OdX2UKGgGaAloD0MIlX8tr1wXVECUhpRSlGgVTegDaBZHQJlZpa+vhZR1fZQoaAZoCWgPQwgg0QSKWBFkQJSGlFKUaBVN6ANoFkdAmXiYFA3T/nV9lChoBmgJaA9DCGjsSzYeE11AlIaUUpRoFU3oA2gWR0CZhOfG+9J0dX2UKGgGaAloD0MIxa2CGGizZECUhpRSlGgVTegDaBZHQJmFhaNdZ7p1fZQoaAZoCWgPQwhFaAQb17xmQJSGlFKUaBVN6ANoFkdAmYg7DZUT+XV9lChoBmgJaA9DCHAk0GBToWZAlIaUUpRoFU3oA2gWR0CZiol41P30dX2UKGgGaAloD0MI/PuMCwdwZECUhpRSlGgVTegDaBZHQJmLO6cy31B1fZQoaAZoCWgPQwjiWYKMANVlQJSGlFKUaBVN6ANoFkdAmYxgzP8htHV9lChoBmgJaA9DCOi9MQSASWBAlIaUUpRoFU3oA2gWR0CZjh8gZCOWdX2UKGgGaAloD0MIxsTm49qPX0CUhpRSlGgVTegDaBZHQJmc/UwztTl1fZQoaAZoCWgPQwhU/rW88k9lQJSGlFKUaBVN6ANoFkdAmaM801qFiHV9lChoBmgJaA9DCNbgfVUuiGNAlIaUUpRoFU3oA2gWR0CZoz9kjHGTdX2UKGgGaAloD0MIm3PwTGiGWUCUhpRSlGgVTegDaBZHQJmyD8pCrtF1fZQoaAZoCWgPQwhbJy7HKzFaQJSGlFKUaBVN6ANoFkdAmbPnZsbednV9lChoBmgJaA9DCA01CknmCGhAlIaUUpRoFU2YAWgWR0CZs/C3gDRudX2UKGgGaAloD0MIUWhZ948xOECUhpRSlGgVTR0BaBZHQJnCY14xDb91fZQoaAZoCWgPQwhHH/MBASpgQJSGlFKUaBVN6ANoFkdAmceRcVxjrnV9lChoBmgJaA9DCHsuU5Pg5l5AlIaUUpRoFU3oA2gWR0CZyY72criEdX2UKGgGaAloD0MIz4WRXtRuWECUhpRSlGgVTegDaBZHQJnLpWgezUt1fZQoaAZoCWgPQwhQ/u4dtbVjQJSGlFKUaBVN6ANoFkdAmefD81n/UHV9lChoBmgJaA9DCAyUFFgAMl9AlIaUUpRoFU3oA2gWR0CZ96vJiiItdX2UKGgGaAloD0MINZnxttLWV0CUhpRSlGgVTegDaBZHQJn4VgDzRQd1fZQoaAZoCWgPQwh0fLQ4Y2pZQJSGlFKUaBVN6ANoFkdAmfs8urZJ1HV9lChoBmgJaA9DCDsYsU+AamFAlIaUUpRoFU3oA2gWR0CZ/blCCz1LdX2UKGgGaAloD0MIxouFIfJ+YkCUhpRSlGgVTegDaBZHQJn+fnmq5sl1fZQoaAZoCWgPQwg3UrZIWhBhQJSGlFKUaBVN6ANoFkdAmf+zeoDPnnV9lChoBmgJaA9DCLw8nStK1TJAlIaUUpRoFU1DAWgWR0CaAN8F6iTMdX2UKGgGaAloD0MIlIYahSToYUCUhpRSlGgVTegDaBZHQJoQxLZi/fx1fZQoaAZoCWgPQwhDVUyln7VhQJSGlFKUaBVN6ANoFkdAmhbeCoS+QHV9lChoBmgJaA9DCJxPHauUlifAlIaUUpRoFU04AWgWR0CaF6eF+NLldX2UKGgGaAloD0MIgIC1atffX0CUhpRSlGgVTegDaBZHQJoh3jXFtKt1fZQoaAZoCWgPQwhBuAIKdZJhQJSGlFKUaBVN6ANoFkdAmiOHBUJfIHV9lChoBmgJaA9DCHmxMETO3WJAlIaUUpRoFU3oA2gWR0CaI5FyaNModX2UKGgGaAloD0MIZK2h1F5uVECUhpRSlGgVTegDaBZHQJo0Rv73wkR1fZQoaAZoCWgPQwhrLGFtDDJmQJSGlFKUaBVN6ANoFkdAmjj72USqVHV9lChoBmgJaA9DCAytTs7Qd2BAlIaUUpRoFU3oA2gWR0CaOsQaaTfSdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3216e56b997b019077e935c43a374480f3a556e0d8646ff36d172d01f71da59d
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c54cb0369b827eb72428aae31164f503d8c64a78086d1f3786b8c052c4488e8
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (256 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 232.15794412375277, "std_reward": 29.102973157307034, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-01T13:57:43.451449"}