Upload 8 files
Browse files- README.md +31 -0
- config.json +6 -0
- hello-base-model.bin +3 -0
- hello-base-model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Card for Custom Minimal Transformer
|
2 |
+
|
3 |
+
### Model Description
|
4 |
+
This is a custom transformer model designed for educational purposes. It demonstrates the basic structure of a transformer model using PyTorch and integrates a pre-trained tokenizer from the Hugging Face library (`bert-base-uncased`).
|
5 |
+
|
6 |
+
### Architecture
|
7 |
+
The model, `MinimalTransformer`, is a simplified transformer architecture consisting of:
|
8 |
+
- Multi-head attention mechanism (`nn.MultiheadAttention`).
|
9 |
+
- Layer normalization (`nn.LayerNorm`).
|
10 |
+
- A feed-forward network composed of linear layers and ReLU activation.
|
11 |
+
|
12 |
+
It demonstrates basic transformer concepts while being more lightweight and easier to understand than full-scale models like BERT or GPT.
|
13 |
+
|
14 |
+
### Training
|
15 |
+
The model was trained on a small, manually created dataset consisting of simple sentences like "Hello world", "Transformers are great", and "PyTorch is fun". It's intended for basic demonstrations and not for achieving state-of-the-art results on complex tasks.
|
16 |
+
|
17 |
+
### Tokenizer
|
18 |
+
The tokenizer used is the `AutoTokenizer` from Hugging Face, specifically the "bert-base-uncased" variant. It handles tokenization, adding special tokens, and converting tokens to their respective IDs in the BERT vocabulary.
|
19 |
+
|
20 |
+
### Usage
|
21 |
+
The model can be used for basic NLP tasks and demonstrations. To use the model:
|
22 |
+
- Load the saved model weights into the `MinimalTransformer` architecture.
|
23 |
+
- Tokenize input sentences using the provided tokenizer.
|
24 |
+
- Pass the tokenized input through the model for inference.
|
25 |
+
|
26 |
+
### Limitations and Bias
|
27 |
+
- The model's performance is limited due to its simplistic nature and the small training dataset.
|
28 |
+
- As it uses a pre-trained BERT tokenizer, any biases present in the BERT model may be transferred to this model.
|
29 |
+
|
30 |
+
### Acknowledgements
|
31 |
+
This model was created for educational purposes and is based on the PyTorch and Hugging Face Transformers libraries.
|
config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_size": 128,
|
3 |
+
"heads": 8,
|
4 |
+
"forward_expansion": 4,
|
5 |
+
"vocab_size": 30522
|
6 |
+
}
|
hello-base-model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:737d22f5b6d2744c80701cf77eb34483aea0fbbbacbc23c8cdbf9c3090c6176a
|
3 |
+
size 15630675
|
hello-base-model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaf1093f724078b0c5ab96952e303e8ced11bae36eaf72143ba9750092a6dc2d
|
3 |
+
size 15629052
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|