--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co./ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5321 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1271 | 1.0 | 113 | 2.0529 | 0.47 | | 1.4245 | 2.0 | 226 | 1.4173 | 0.6 | | 1.1783 | 3.0 | 339 | 1.0567 | 0.71 | | 0.7597 | 4.0 | 452 | 0.8387 | 0.75 | | 0.6043 | 5.0 | 565 | 0.6876 | 0.81 | | 0.4758 | 6.0 | 678 | 0.6897 | 0.79 | | 0.4882 | 7.0 | 791 | 0.6507 | 0.79 | | 0.2361 | 8.0 | 904 | 0.6232 | 0.84 | | 0.209 | 9.0 | 1017 | 0.5800 | 0.82 | | 0.0859 | 10.0 | 1130 | 0.5414 | 0.85 | | 0.0639 | 11.0 | 1243 | 0.5321 | 0.88 | | 0.0405 | 12.0 | 1356 | 0.8187 | 0.82 | | 0.0481 | 13.0 | 1469 | 0.7086 | 0.85 | | 0.0127 | 14.0 | 1582 | 0.7394 | 0.84 | | 0.0071 | 15.0 | 1695 | 0.6890 | 0.86 | | 0.0073 | 16.0 | 1808 | 0.7361 | 0.86 | | 0.0062 | 17.0 | 1921 | 0.9311 | 0.8 | | 0.0028 | 18.0 | 2034 | 0.7819 | 0.84 | | 0.0024 | 19.0 | 2147 | 0.8263 | 0.86 | | 0.0023 | 20.0 | 2260 | 0.8049 | 0.86 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0