GuysTrans commited on
Commit
4e21891
·
1 Parent(s): 34aae86

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -5
README.md CHANGED
@@ -3,6 +3,8 @@ license: apache-2.0
3
  base_model: facebook/bart-base
4
  tags:
5
  - generated_from_trainer
 
 
6
  model-index:
7
  - name: bart-base-finetuned-xsum
8
  results: []
@@ -14,6 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
14
  # bart-base-finetuned-xsum
15
 
16
  This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
 
 
 
 
 
 
 
17
 
18
  ## Model description
19
 
@@ -38,18 +47,117 @@ The following hyperparameters were used during training:
38
  - seed: 42
39
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
  - lr_scheduler_type: linear
41
- - num_epochs: 1
42
 
43
  ### Training results
44
 
45
- | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
46
- |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
47
- | No log | 1.0 | 22 | 3.6905 | 8.6962 | 1.0619 | 6.6195 | 7.9339 | 19.5556 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
 
50
  ### Framework versions
51
 
52
  - Transformers 4.31.0
53
  - Pytorch 2.0.1+cu118
54
- - Datasets 2.13.1
55
  - Tokenizers 0.13.3
 
3
  base_model: facebook/bart-base
4
  tags:
5
  - generated_from_trainer
6
+ metrics:
7
+ - rouge
8
  model-index:
9
  - name: bart-base-finetuned-xsum
10
  results: []
 
16
  # bart-base-finetuned-xsum
17
 
18
  This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0568
21
+ - Rouge1: 30.2563
22
+ - Rouge2: 28.8168
23
+ - Rougel: 30.2467
24
+ - Rougelsum: 30.2569
25
+ - Gen Len: 19.9298
26
 
27
  ## Model description
28
 
 
47
  - seed: 42
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
+ - num_epochs: 100
51
 
52
  ### Training results
53
 
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
55
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
56
+ | No log | 1.0 | 22 | 3.5383 | 9.5779 | 1.3552 | 7.1347 | 8.7496 | 19.5556 |
57
+ | No log | 2.0 | 44 | 3.2542 | 10.1333 | 1.5586 | 7.707 | 9.2027 | 19.4561 |
58
+ | No log | 3.0 | 66 | 3.0487 | 11.5328 | 2.0714 | 8.6351 | 10.4996 | 19.462 |
59
+ | No log | 4.0 | 88 | 2.8741 | 11.3918 | 2.2439 | 8.7008 | 10.3865 | 19.1754 |
60
+ | No log | 5.0 | 110 | 2.7390 | 11.6082 | 2.4409 | 8.9366 | 10.6473 | 19.0351 |
61
+ | No log | 6.0 | 132 | 2.6105 | 12.3196 | 2.8152 | 9.3727 | 11.2198 | 19.3099 |
62
+ | No log | 7.0 | 154 | 2.4855 | 12.9853 | 3.0374 | 9.8049 | 11.5607 | 19.5322 |
63
+ | No log | 8.0 | 176 | 2.3759 | 14.0849 | 3.4421 | 10.7915 | 12.6688 | 19.7836 |
64
+ | No log | 9.0 | 198 | 2.2703 | 14.21 | 3.62 | 10.7563 | 12.8026 | 19.8129 |
65
+ | No log | 10.0 | 220 | 2.1689 | 13.587 | 3.08 | 10.2941 | 12.2536 | 19.7836 |
66
+ | No log | 11.0 | 242 | 2.0763 | 13.8846 | 3.253 | 10.6637 | 12.4641 | 19.8596 |
67
+ | No log | 12.0 | 264 | 1.9905 | 14.2798 | 4.3509 | 11.2371 | 13.2956 | 19.7836 |
68
+ | No log | 13.0 | 286 | 1.8956 | 14.6906 | 4.0982 | 11.3513 | 13.2757 | 19.8421 |
69
+ | No log | 14.0 | 308 | 1.8114 | 14.5806 | 4.0165 | 11.2885 | 13.2862 | 19.8596 |
70
+ | No log | 15.0 | 330 | 1.7337 | 14.3077 | 3.783 | 10.9654 | 13.1235 | 19.8538 |
71
+ | No log | 16.0 | 352 | 1.6598 | 15.269 | 4.8164 | 11.7211 | 13.8863 | 19.8596 |
72
+ | No log | 17.0 | 374 | 1.5849 | 15.1094 | 4.3627 | 11.5927 | 13.6904 | 19.8363 |
73
+ | No log | 18.0 | 396 | 1.5092 | 15.6749 | 5.2096 | 12.4685 | 14.5261 | 19.8596 |
74
+ | No log | 19.0 | 418 | 1.4288 | 15.0926 | 4.8751 | 11.7242 | 13.9716 | 19.8772 |
75
+ | No log | 20.0 | 440 | 1.3674 | 16.0192 | 5.5445 | 12.62 | 14.7367 | 19.807 |
76
+ | No log | 21.0 | 462 | 1.2949 | 16.0017 | 5.6049 | 12.6056 | 14.804 | 19.9123 |
77
+ | No log | 22.0 | 484 | 1.2363 | 16.1471 | 5.6893 | 12.6893 | 14.8879 | 19.8421 |
78
+ | 2.7001 | 23.0 | 506 | 1.1718 | 15.9206 | 5.9164 | 12.5858 | 14.7608 | 19.8187 |
79
+ | 2.7001 | 24.0 | 528 | 1.1139 | 17.3265 | 7.7984 | 14.3624 | 16.1346 | 19.8889 |
80
+ | 2.7001 | 25.0 | 550 | 1.0572 | 17.4553 | 7.8986 | 14.5663 | 16.2582 | 19.8246 |
81
+ | 2.7001 | 26.0 | 572 | 1.0005 | 17.8156 | 7.6528 | 14.6735 | 16.5001 | 19.9006 |
82
+ | 2.7001 | 27.0 | 594 | 0.9436 | 18.4062 | 8.656 | 15.1709 | 17.1584 | 19.8947 |
83
+ | 2.7001 | 28.0 | 616 | 0.9016 | 18.6358 | 9.2967 | 15.7687 | 17.5333 | 19.9532 |
84
+ | 2.7001 | 29.0 | 638 | 0.8521 | 19.509 | 10.2714 | 16.7276 | 18.3507 | 19.9123 |
85
+ | 2.7001 | 30.0 | 660 | 0.8054 | 19.6085 | 10.6017 | 16.7532 | 18.5697 | 19.9123 |
86
+ | 2.7001 | 31.0 | 682 | 0.7572 | 19.9368 | 10.9483 | 17.2141 | 18.919 | 19.9123 |
87
+ | 2.7001 | 32.0 | 704 | 0.7174 | 20.6909 | 12.3541 | 18.3001 | 19.7958 | 19.9532 |
88
+ | 2.7001 | 33.0 | 726 | 0.6796 | 22.126 | 14.5214 | 19.8644 | 21.3789 | 19.8772 |
89
+ | 2.7001 | 34.0 | 748 | 0.6393 | 22.1752 | 14.8152 | 20.0276 | 21.3231 | 19.8596 |
90
+ | 2.7001 | 35.0 | 770 | 0.6060 | 22.2251 | 15.2014 | 20.2721 | 21.3932 | 19.9123 |
91
+ | 2.7001 | 36.0 | 792 | 0.5731 | 22.6914 | 15.7427 | 20.5852 | 21.9249 | 19.8772 |
92
+ | 2.7001 | 37.0 | 814 | 0.5386 | 23.93 | 17.4114 | 22.021 | 23.1866 | 19.9181 |
93
+ | 2.7001 | 38.0 | 836 | 0.5138 | 23.7373 | 17.32 | 21.9715 | 23.0144 | 19.9123 |
94
+ | 2.7001 | 39.0 | 858 | 0.4774 | 24.2258 | 18.2839 | 22.6412 | 23.6068 | 19.9181 |
95
+ | 2.7001 | 40.0 | 880 | 0.4573 | 24.997 | 19.2868 | 23.4309 | 24.389 | 19.9123 |
96
+ | 2.7001 | 41.0 | 902 | 0.4280 | 24.7499 | 19.2674 | 23.382 | 24.1711 | 19.8713 |
97
+ | 2.7001 | 42.0 | 924 | 0.4049 | 25.7943 | 21.0893 | 24.7284 | 25.361 | 19.9123 |
98
+ | 2.7001 | 43.0 | 946 | 0.3822 | 26.3463 | 21.9698 | 25.4544 | 25.9681 | 19.8655 |
99
+ | 2.7001 | 44.0 | 968 | 0.3601 | 26.7457 | 22.6408 | 25.9031 | 26.4579 | 19.9123 |
100
+ | 2.7001 | 45.0 | 990 | 0.3420 | 26.7588 | 22.6918 | 25.9063 | 26.5082 | 19.9123 |
101
+ | 1.2604 | 46.0 | 1012 | 0.3243 | 27.4421 | 23.8278 | 26.8448 | 27.2093 | 19.9123 |
102
+ | 1.2604 | 47.0 | 1034 | 0.3083 | 27.9994 | 24.5363 | 27.3867 | 27.7983 | 19.9123 |
103
+ | 1.2604 | 48.0 | 1056 | 0.2874 | 28.4342 | 25.4142 | 28.0441 | 28.3455 | 19.9123 |
104
+ | 1.2604 | 49.0 | 1078 | 0.2726 | 28.4356 | 25.4477 | 28.0358 | 28.384 | 19.9123 |
105
+ | 1.2604 | 50.0 | 1100 | 0.2592 | 28.3333 | 25.2923 | 27.9377 | 28.195 | 19.9123 |
106
+ | 1.2604 | 51.0 | 1122 | 0.2436 | 29.2428 | 26.6115 | 28.8516 | 29.1073 | 19.9298 |
107
+ | 1.2604 | 52.0 | 1144 | 0.2304 | 28.9631 | 26.2987 | 28.61 | 28.8463 | 19.9006 |
108
+ | 1.2604 | 53.0 | 1166 | 0.2207 | 29.2598 | 26.7471 | 29.0594 | 29.2673 | 19.9474 |
109
+ | 1.2604 | 54.0 | 1188 | 0.2123 | 29.4739 | 27.3109 | 29.4082 | 29.5044 | 19.9298 |
110
+ | 1.2604 | 55.0 | 1210 | 0.1975 | 28.9596 | 26.6549 | 28.8391 | 28.9865 | 19.9006 |
111
+ | 1.2604 | 56.0 | 1232 | 0.1899 | 29.6305 | 27.5357 | 29.4856 | 29.5378 | 19.9006 |
112
+ | 1.2604 | 57.0 | 1254 | 0.1785 | 29.891 | 27.7983 | 29.6302 | 29.7995 | 19.9298 |
113
+ | 1.2604 | 58.0 | 1276 | 0.1697 | 30.072 | 28.1443 | 29.8833 | 30.002 | 19.9298 |
114
+ | 1.2604 | 59.0 | 1298 | 0.1631 | 29.9935 | 28.0824 | 29.813 | 29.9039 | 19.9298 |
115
+ | 1.2604 | 60.0 | 1320 | 0.1561 | 29.8404 | 27.955 | 29.7251 | 29.7914 | 19.9006 |
116
+ | 1.2604 | 61.0 | 1342 | 0.1494 | 29.9133 | 28.1012 | 29.7574 | 29.8523 | 19.9006 |
117
+ | 1.2604 | 62.0 | 1364 | 0.1411 | 30.013 | 28.1783 | 29.8939 | 30.0162 | 19.9298 |
118
+ | 1.2604 | 63.0 | 1386 | 0.1363 | 29.7979 | 28.0003 | 29.666 | 29.8143 | 19.9006 |
119
+ | 1.2604 | 64.0 | 1408 | 0.1302 | 30.07 | 28.3675 | 30.015 | 30.0808 | 19.9298 |
120
+ | 1.2604 | 65.0 | 1430 | 0.1250 | 30.1907 | 28.5083 | 30.1438 | 30.1837 | 19.9298 |
121
+ | 1.2604 | 66.0 | 1452 | 0.1189 | 29.8624 | 28.1503 | 29.7559 | 29.8928 | 19.9006 |
122
+ | 1.2604 | 67.0 | 1474 | 0.1130 | 30.187 | 28.5748 | 30.135 | 30.1947 | 19.9474 |
123
+ | 1.2604 | 68.0 | 1496 | 0.1086 | 30.1976 | 28.6341 | 30.1643 | 30.2108 | 19.9298 |
124
+ | 0.6549 | 69.0 | 1518 | 0.1072 | 30.2537 | 28.7763 | 30.2247 | 30.2813 | 19.9474 |
125
+ | 0.6549 | 70.0 | 1540 | 0.1053 | 30.1574 | 28.4808 | 30.0796 | 30.1488 | 19.924 |
126
+ | 0.6549 | 71.0 | 1562 | 0.1002 | 30.2294 | 28.749 | 30.2237 | 30.2444 | 19.9474 |
127
+ | 0.6549 | 72.0 | 1584 | 0.0958 | 30.2275 | 28.6767 | 30.2092 | 30.2327 | 19.9298 |
128
+ | 0.6549 | 73.0 | 1606 | 0.0926 | 30.204 | 28.7073 | 30.1788 | 30.2204 | 19.9298 |
129
+ | 0.6549 | 74.0 | 1628 | 0.0898 | 30.2236 | 28.7646 | 30.2168 | 30.2423 | 19.9298 |
130
+ | 0.6549 | 75.0 | 1650 | 0.0848 | 30.2375 | 28.8277 | 30.2291 | 30.2674 | 19.9474 |
131
+ | 0.6549 | 76.0 | 1672 | 0.0838 | 30.2383 | 28.833 | 30.2295 | 30.2596 | 19.9474 |
132
+ | 0.6549 | 77.0 | 1694 | 0.0814 | 30.2612 | 28.8227 | 30.253 | 30.2757 | 19.9474 |
133
+ | 0.6549 | 78.0 | 1716 | 0.0789 | 30.2242 | 28.7884 | 30.2173 | 30.2367 | 19.924 |
134
+ | 0.6549 | 79.0 | 1738 | 0.0778 | 30.2501 | 28.8825 | 30.2431 | 30.2649 | 19.9474 |
135
+ | 0.6549 | 80.0 | 1760 | 0.0746 | 30.2242 | 28.8027 | 30.2173 | 30.2367 | 19.924 |
136
+ | 0.6549 | 81.0 | 1782 | 0.0738 | 30.2184 | 28.7956 | 30.2107 | 30.2268 | 19.9298 |
137
+ | 0.6549 | 82.0 | 1804 | 0.0712 | 30.2184 | 28.8063 | 30.2107 | 30.2268 | 19.924 |
138
+ | 0.6549 | 83.0 | 1826 | 0.0695 | 30.2184 | 28.8063 | 30.2107 | 30.2268 | 19.924 |
139
+ | 0.6549 | 84.0 | 1848 | 0.0683 | 30.2184 | 28.8063 | 30.2107 | 30.2268 | 19.924 |
140
+ | 0.6549 | 85.0 | 1870 | 0.0664 | 30.1396 | 28.7072 | 30.1389 | 30.1451 | 19.9064 |
141
+ | 0.6549 | 86.0 | 1892 | 0.0657 | 30.1239 | 28.688 | 30.1254 | 30.1301 | 19.9064 |
142
+ | 0.6549 | 87.0 | 1914 | 0.0641 | 30.2184 | 28.792 | 30.2107 | 30.2268 | 19.924 |
143
+ | 0.6549 | 88.0 | 1936 | 0.0630 | 30.2357 | 28.8062 | 30.2215 | 30.2395 | 19.9298 |
144
+ | 0.6549 | 89.0 | 1958 | 0.0618 | 30.2184 | 28.7851 | 30.2107 | 30.2268 | 19.924 |
145
+ | 0.6549 | 90.0 | 1980 | 0.0606 | 30.2184 | 28.7898 | 30.2107 | 30.2268 | 19.9298 |
146
+ | 0.4294 | 91.0 | 2002 | 0.0601 | 30.2184 | 28.792 | 30.2107 | 30.2268 | 19.9298 |
147
+ | 0.4294 | 92.0 | 2024 | 0.0594 | 30.2184 | 28.7851 | 30.2107 | 30.2268 | 19.9298 |
148
+ | 0.4294 | 93.0 | 2046 | 0.0591 | 30.2184 | 28.7851 | 30.2107 | 30.2268 | 19.9298 |
149
+ | 0.4294 | 94.0 | 2068 | 0.0583 | 30.2184 | 28.792 | 30.2107 | 30.2268 | 19.9298 |
150
+ | 0.4294 | 95.0 | 2090 | 0.0578 | 30.2357 | 28.8062 | 30.2215 | 30.2395 | 19.9298 |
151
+ | 0.4294 | 96.0 | 2112 | 0.0574 | 30.2357 | 28.8296 | 30.2215 | 30.2395 | 19.9298 |
152
+ | 0.4294 | 97.0 | 2134 | 0.0572 | 30.2563 | 28.8382 | 30.2467 | 30.2569 | 19.9298 |
153
+ | 0.4294 | 98.0 | 2156 | 0.0572 | 30.2563 | 28.8382 | 30.2467 | 30.2569 | 19.9298 |
154
+ | 0.4294 | 99.0 | 2178 | 0.0569 | 30.2563 | 28.8382 | 30.2467 | 30.2569 | 19.9298 |
155
+ | 0.4294 | 100.0 | 2200 | 0.0568 | 30.2563 | 28.8168 | 30.2467 | 30.2569 | 19.9298 |
156
 
157
 
158
  ### Framework versions
159
 
160
  - Transformers 4.31.0
161
  - Pytorch 2.0.1+cu118
162
+ - Datasets 2.14.0
163
  - Tokenizers 0.13.3