File size: 1,735 Bytes
d080131 a78097a d080131 9a23e08 d080131 a78097a 9a23e08 3edfb53 9a23e08 d080131 9a23e08 d080131 3d5e6b2 9a23e08 3edfb53 9a23e08 d080131 a78097a 8f087a6 d080131 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-xsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-xsum
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1690
- Rouge1: 16.5953
- Rouge2: 12.3097
- Rougel: 15.9007
- Rougelsum: 16.4053
- Bleu-1: 0.0062
- Bleu-2: 0.0057
- Bleu-3: 0.0054
- Bleu-4: 0.0052
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------:|:------:|:------:|:------:|:-------:|
| 2.3294 | 1.0 | 28600 | 1.1690 | 16.5953 | 12.3097 | 15.9007 | 16.4053 | 0.0062 | 0.0057 | 0.0054 | 0.0052 | 20.0 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|