File size: 1,321 Bytes
d080131
 
 
 
 
 
 
 
 
 
 
 
 
 
90620b5
5858f77
dd1e1dc
 
 
 
 
 
 
 
 
 
 
d080131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd1e1dc
 
d080131
 
 
90620b5
005c8cf
d080131
 
90620b5
 
 
d080131
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-finetuned-xsum

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.6558
- eval_rouge1: 10.116
- eval_rouge2: 4.6066
- eval_rougeL: 8.2314
- eval_rougeLsum: 9.4884
- eval_gen_len: 20.0
- eval_runtime: 1086.9962
- eval_samples_per_second: 11.385
- eval_steps_per_second: 0.712
- epoch: 2.0
- step: 6188

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3