File size: 1,321 Bytes
d080131 90620b5 5858f77 dd1e1dc d080131 dd1e1dc d080131 90620b5 005c8cf d080131 90620b5 d080131 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-finetuned-xsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-xsum
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.6558
- eval_rouge1: 10.116
- eval_rouge2: 4.6066
- eval_rougeL: 8.2314
- eval_rougeLsum: 9.4884
- eval_gen_len: 20.0
- eval_runtime: 1086.9962
- eval_samples_per_second: 11.385
- eval_steps_per_second: 0.712
- epoch: 2.0
- step: 6188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|