File size: 2,426 Bytes
d080131
 
 
 
005c8cf
 
d080131
 
 
 
 
 
 
 
 
 
90620b5
5858f77
90620b5
91ad898
 
 
 
d290e49
d080131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90620b5
 
d080131
 
 
90620b5
005c8cf
 
 
 
 
89a8826
 
 
 
 
 
 
 
 
 
005c8cf
d080131
 
 
90620b5
 
 
d080131
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-finetuned-xsum

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7802
- Rouge1: 10.2407
- Rouge2: 5.6898
- Rougel: 8.8732
- Rougelsum: 9.8768
- Gen Len: 20.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
| 1.596         | 1.0   | 501  | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |
| 1.6005        | 2.0   | 1002 | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |
| 1.5976        | 3.0   | 1503 | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |
| 1.5868        | 4.0   | 2004 | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |
| 1.605         | 5.0   | 2505 | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |
| 1.6027        | 6.0   | 3006 | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |
| 1.5854        | 7.0   | 3507 | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |
| 1.605         | 8.0   | 4008 | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |
| 1.5957        | 9.0   | 4509 | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |
| 1.6029        | 10.0  | 5010 | 1.7802          | 10.2407 | 5.6898 | 8.8732 | 9.8768    | 20.0    |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3