File size: 1,512 Bytes
d080131
 
 
 
3d5e6b2
 
d080131
 
 
 
 
 
 
 
 
 
a33b90e
5858f77
a33b90e
84eb944
 
 
 
3d5e6b2
d080131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f42077
 
d080131
 
 
3d5e6b2
 
 
 
84eb944
 
 
3d5e6b2
005c8cf
d080131
 
a33b90e
 
 
d080131
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-finetuned-xsum

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7880
- Rouge1: 10.624
- Rouge2: 4.7039
- Rougel: 8.5232
- Rougelsum: 9.8684
- Gen Len: 20.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.6423        | 1.0   | 6188 | 1.7880          | 10.624 | 4.7039 | 8.5232 | 9.8684    | 20.0    |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3