File size: 1,520 Bytes
d080131
 
 
 
0c80477
 
d080131
 
 
 
 
 
 
 
 
 
9ede6ab
0c80477
8f087a6
316cc11
 
 
 
0c80477
d080131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575803f
 
d080131
 
 
3d5e6b2
 
0c80477
 
87a24ae
 
316cc11
0c80477
 
d080131
 
8f087a6
 
 
d080131
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-finetuned-xsum

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6608
- Rouge1: 11.5761
- Rouge2: 5.7527
- Rougel: 9.5029
- Rougelsum: 10.5799
- Gen Len: 20.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
| 1.6755        | 1.0   | 15011 | 1.6608          | 11.5761 | 5.7527 | 9.5029 | 10.5799   | 20.0    |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3