File size: 2,426 Bytes
d080131 005c8cf d080131 90620b5 5858f77 90620b5 91ad898 d290e49 d080131 90620b5 d080131 90620b5 005c8cf 436062f 005c8cf d080131 90620b5 d080131 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-xsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-xsum
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7802
- Rouge1: 10.2407
- Rouge2: 5.6898
- Rougel: 8.8732
- Rougelsum: 9.8768
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
| 1.5899 | 1.0 | 501 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
| 1.602 | 2.0 | 1002 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
| 1.5988 | 3.0 | 1503 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
| 1.6032 | 4.0 | 2004 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
| 1.5944 | 5.0 | 2505 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
| 1.5945 | 6.0 | 3006 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
| 1.6061 | 7.0 | 3507 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
| 1.5969 | 8.0 | 4008 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
| 1.586 | 9.0 | 4509 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
| 1.5935 | 10.0 | 5010 | 1.7802 | 10.2407 | 5.6898 | 8.8732 | 9.8768 | 20.0 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|