--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:218496 - loss:MultipleNegativesRankingLoss widget: - source_sentence: "when dividing involving a multiple of 10, gives an answer 10 times\ \ bigger than it should be\n\ndivide decimals by 10(multiplying and dividing with\ \ decimals).\nquestion: 43.2 \\div 10= \ncorrect answer: 4.32 \nincorrect answer:\ \ 33.2" sentences: - Does not recognise that a shape translated would not change orientation - Thinks you can find missing values in a given table by treating the row as linear and adding on the difference between the first two values given. - Subtracts instead of divides - source_sentence: "incorrectly cancels what they believe is a factor in algebraic\ \ fractions\n\nsimplify an algebraic fraction by factorising the numerator(simplifying\ \ algebraic fractions).\nquestion: simplify the following, if possible: \\frac{m^{2}+2\ \ m-3}{m-3} \ncorrect answer: does not simplify\nincorrect answer: m+1" sentences: - Does not know units of area should be squared - Thinks all lines on a net will form edges in 3D - 'Does not know that to factorise a quadratic expression, to find two numbers that add to give the coefficient of the x term, and multiply to give the non variable term ' - source_sentence: "believes that the order of operations does not affect the answer\ \ to a calculation\n\nuse the order of operations to carry out calculations involving\ \ powers(bidmas).\nquestion: \\[\n3 \\times 2+4-5\n\\]\nwhere do the brackets\ \ need to go to make the answer equal 13 ?\ncorrect answer: 3 \\times(2+4)-5 \n\ incorrect answer: does not need brackets" sentences: - Thinks that when you cancel identical terms from the numerator and denominator, they just disappear - Believes both the x and y co-ordinates of the x-intercept of a quadratic are derived from the constants in the factorised form. - 'Confuses the order of operations, believes addition comes before multiplication ' - source_sentence: "believes that the order of operations does not affect the answer\ \ to a calculation\n\nuse the order of operations to carry out calculations involving\ \ powers(bidmas).\nquestion: \\[\n3 \\times 2+4-5\n\\]\nwhere do the brackets\ \ need to go to make the answer equal 13 ?\ncorrect answer: 3 \\times(2+4)-5 \n\ incorrect answer: does not need brackets" sentences: - 'Confuses the order of operations, believes addition comes before multiplication ' - Does not recognise the properties of a kite - 'Confuses the order of operations, believes addition comes before multiplication ' - source_sentence: "believes percentages cannot be converted into fractions\n\nconvert\ \ two digit integer percentages to fractions(converting between fractions and\ \ percentages).\nquestion: convert this percentage to a fraction\n 62 \\% \ncorrect\ \ answer: \\frac{31}{50} \nincorrect answer: none of these" sentences: - Believes the gradients of perpendicular lines are reciprocals of the same sign - Does not know the properties of a rectangle - Does not understand a percentage is out of 100 --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Gurveer05/gte-base-eedi-2024") # Run inference sentences = [ 'believes percentages cannot be converted into fractions\n\nconvert two digit integer percentages to fractions(converting between fractions and percentages).\nquestion: convert this percentage to a fraction\n 62 \\% \ncorrect answer: \\frac{31}{50} \nincorrect answer: none of these', 'Does not understand a percentage is out of 100', 'Believes the gradients of perpendicular lines are reciprocals of the same sign', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 218,496 training samples * Columns: FullText, GroundTruthMisconception, and PredictMisconception * Approximate statistics based on the first 1000 samples: | | FullText | GroundTruthMisconception | PredictMisconception | |:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | FullText | GroundTruthMisconception | PredictMisconception | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------| | believes that the order of operations does not affect the answer to a calculation

use the order of operations to carry out calculations involving powers(bidmas).
question: \[
3 \times 2+4-5
\]
where do the brackets need to go to make the answer equal 13 ?
correct answer: 3 \times(2+4)-5
incorrect answer: does not need brackets
| Confuses the order of operations, believes addition comes before multiplication | Believes infinite gradient is not possible in real life. | | believes that the order of operations does not affect the answer to a calculation

use the order of operations to carry out calculations involving powers(bidmas).
question: \[
3 \times 2+4-5
\]
where do the brackets need to go to make the answer equal 13 ?
correct answer: 3 \times(2+4)-5
incorrect answer: does not need brackets
| Confuses the order of operations, believes addition comes before multiplication | Struggles to draw 3D shapes on isometric paper | | believes that the order of operations does not affect the answer to a calculation

use the order of operations to carry out calculations involving powers(bidmas).
question: \[
3 \times 2+4-5
\]
where do the brackets need to go to make the answer equal 13 ?
correct answer: 3 \times(2+4)-5
incorrect answer: does not need brackets
| Confuses the order of operations, believes addition comes before multiplication | Believes an upward slope on a distance-time graph means travelling back towards the starting point. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 2 - `lr_scheduler_type`: cosine_with_restarts - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: cosine_with_restarts - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.1757 | 300 | 0.9143 | | 0.3515 | 600 | 0.8284 | | 0.5272 | 900 | 0.8444 | | 0.7030 | 1200 | 0.7999 | | 0.8787 | 1500 | 0.8901 | | 1.0512 | 1800 | 0.8029 | | 1.2269 | 2100 | 0.6198 | | 1.4027 | 2400 | 0.5837 | | 1.5784 | 2700 | 0.603 | | 1.7542 | 3000 | 0.5336 | | 1.9299 | 3300 | 0.5977 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 3.1.0 - Transformers: 4.42.3 - PyTorch: 2.3.0+cu121 - Accelerate: 0.32.1 - Datasets: 3.0.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```