--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.92 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4835 - Accuracy: 0.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2788 | 1.0 | 225 | 0.4533 | 0.88 | | 0.3838 | 2.0 | 450 | 1.0800 | 0.75 | | 0.3945 | 3.0 | 675 | 0.9446 | 0.76 | | 0.0219 | 4.0 | 900 | 0.6243 | 0.89 | | 0.0005 | 5.0 | 1125 | 0.4831 | 0.91 | | 0.0 | 6.0 | 1350 | 0.6262 | 0.88 | | 0.0001 | 7.0 | 1575 | 0.4827 | 0.93 | | 0.0 | 8.0 | 1800 | 0.4794 | 0.93 | | 0.0 | 9.0 | 2025 | 0.4814 | 0.92 | | 0.0 | 10.0 | 2250 | 0.4835 | 0.92 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1