--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased-finetuned-ner-harem results: [] --- # bert-large-uncased-finetuned-ner-harem This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co./google-bert/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3109 - Precision: 0.6895 - Recall: 0.6442 - F1: 0.6661 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9978 | 281 | 0.2896 | 0.5442 | 0.4772 | 0.5085 | 0.9238 | | 0.3496 | 1.9973 | 562 | 0.2340 | 0.6811 | 0.5295 | 0.5958 | 0.9412 | | 0.3496 | 2.9969 | 843 | 0.2240 | 0.5876 | 0.5599 | 0.5734 | 0.9409 | | 0.1372 | 3.9964 | 1124 | 0.2540 | 0.6910 | 0.6223 | 0.6548 | 0.9403 | | 0.1372 | 4.9960 | 1405 | 0.2598 | 0.6433 | 0.6358 | 0.6395 | 0.9439 | | 0.0648 | 5.9956 | 1686 | 0.2377 | 0.6945 | 0.6442 | 0.6684 | 0.9497 | | 0.0648 | 6.9951 | 1967 | 0.2822 | 0.6965 | 0.6425 | 0.6684 | 0.9501 | | 0.0316 | 7.9982 | 2249 | 0.2958 | 0.7044 | 0.6509 | 0.6766 | 0.9518 | | 0.0148 | 8.9978 | 2530 | 0.3006 | 0.6944 | 0.6476 | 0.6702 | 0.9496 | | 0.0148 | 9.9938 | 2810 | 0.3109 | 0.6895 | 0.6442 | 0.6661 | 0.9512 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3