--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-uncased-finetuned-ner-lenerBR results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: validation args: lener_br metrics: - name: Precision type: precision value: 0.8678256070640177 - name: Recall type: recall value: 0.8758006126427179 - name: F1 type: f1 value: 0.8717948717948718 - name: Accuracy type: accuracy value: 0.9706569722150091 --- # bert-base-multilingual-uncased-finetuned-ner-lenerBR This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co./google-bert/bert-base-multilingual-uncased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.1568 - Precision: 0.8678 - Recall: 0.8758 - F1: 0.8718 - Accuracy: 0.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 245 | 0.1819 | 0.7691 | 0.8118 | 0.7899 | 0.9585 | | No log | 2.0 | 490 | 0.1487 | 0.7383 | 0.8098 | 0.7724 | 0.9586 | | 0.1325 | 3.0 | 735 | 0.1532 | 0.8662 | 0.8777 | 0.8719 | 0.9683 | | 0.1325 | 4.0 | 980 | 0.1470 | 0.8770 | 0.8800 | 0.8785 | 0.9698 | | 0.0233 | 5.0 | 1225 | 0.1155 | 0.8493 | 0.8839 | 0.8663 | 0.9750 | | 0.0233 | 6.0 | 1470 | 0.1727 | 0.8874 | 0.8822 | 0.8848 | 0.9701 | | 0.0126 | 7.0 | 1715 | 0.1698 | 0.8890 | 0.8853 | 0.8871 | 0.9710 | | 0.0126 | 8.0 | 1960 | 0.1687 | 0.8651 | 0.8783 | 0.8716 | 0.9702 | | 0.0076 | 9.0 | 2205 | 0.1593 | 0.8077 | 0.8797 | 0.8422 | 0.9668 | | 0.0076 | 10.0 | 2450 | 0.1568 | 0.8678 | 0.8758 | 0.8718 | 0.9707 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1