Upload of LunarLander-v2 model
Browse files- README.md +37 -0
- caesar.zip +3 -0
- caesar/_stable_baselines3_version +1 -0
- caesar/data +94 -0
- caesar/policy.optimizer.pth +3 -0
- caesar/policy.pth +3 -0
- caesar/pytorch_variables.pth +3 -0
- caesar/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SB3 PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 270.67 +/- 20.46
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SB3 PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **SB3 PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
caesar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4079ca8992f3363f0016ec9011ffcc89cacbf64defaef9c6099f837902b114e
|
3 |
+
size 147218
|
caesar/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
caesar/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6259b0cca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6259b0cd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6259b0cdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6259b0ce50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6259b0cee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6259b0cf70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6259a91040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6259a910d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6259a91160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6259a911f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6259a91280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6259b0b420>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671517638344277300,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK1MDb5L26E/XXnnvgAK4b7keTO+Kw3dvQAAAAAAAAAAAO8ZPfk/RD5deQq+xZ9Gvszjar3Qqwi9AAAAAAAAAACNyi4+CvBAP8Ok471Zba6+2IlPPX5k8b0AAAAAAAAAALNizb0uqa4/Wp54viCR5L52c7K9wAvavQAAAAAAAAAA2hfMvQbpoT+2qsi+XaQMv948uL0qbv88AAAAAAAAAABA3YS9OHPUu1o7uzwB0xM9SiYcPXD48r0AAIA/AACAP5PsTb4L56I/9PSfvqyj2b4H5wG+RYFdvAAAAAAAAAAA41d8vlhDcT+bNra+su+6vmHfgb6aJoS9AAAAAAAAAABNYhy9j55Nugse07l2/Y62k7KlOpOD8zgAAIA/AACAP2YMGz2f5d+7fnOKOw7hhzyQn1O9qlplPQAAgD8AAIA/AFQxvU0lsz939ha/M8UavqQ4DDy9ZsW9AAAAAAAAAADTOou+bRhXvTvOo7wDq0+7L3O4PgatEzwAAIA/AACAP80AOr3Zw5c+LmGHvWZjSr4FPhi9PZtjOwAAAAAAAAAAZsEsPWyIgD/Od0O7wVatvr/+0T3wyu65AAAAAAAAAAANIbg9YNcyP/Kokr0x4q2+2nIDPVqV+b0AAAAAAAAAALMEO72zN7I/BcFlviC2i75vl9+8NLMQvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPWL03IIFcECUhpRSlIwBbJRNNgGMAXSUR0Cb7ZqX4TK1dX2UKGgGaAloD0MIb0p5rYSLbkCUhpRSlGgVTQwBaBZHQJvt5SHdoFp1fZQoaAZoCWgPQwgO95FbU0twQJSGlFKUaBVNTgFoFkdAm+537cfvF3V9lChoBmgJaA9DCKnBNAyfdXBAlIaUUpRoFU0fAWgWR0Cb7pzZpSJkdX2UKGgGaAloD0MIrTO+L64obkCUhpRSlGgVTQ0BaBZHQJvvcLRa5gB1fZQoaAZoCWgPQwhzaJHtPJpxQJSGlFKUaBVNMQFoFkdAm++CzgMtsnV9lChoBmgJaA9DCD4/jBAemXBAlIaUUpRoFU1DAWgWR0Cb753QD3dsdX2UKGgGaAloD0MIPZ6WH/jlckCUhpRSlGgVTTUBaBZHQJvv9ruYx+N1fZQoaAZoCWgPQwiS6GUUi/RwQJSGlFKUaBVNDgFoFkdAm/CIwEhaDHV9lChoBmgJaA9DCE4mbhUEI3BAlIaUUpRoFU03AWgWR0Cb8fGetjkNdX2UKGgGaAloD0MIHhuBeN1PcECUhpRSlGgVTWMBaBZHQJvypq59Vm11fZQoaAZoCWgPQwhV203wDXZyQJSGlFKUaBVNGAFoFkdAm/NKlxffGnV9lChoBmgJaA9DCK8I/reSC3BAlIaUUpRoFU0vAWgWR0Cb89vnbItEdX2UKGgGaAloD0MIO4kI/6Kvb0CUhpRSlGgVTRoBaBZHQJvz6lZX+2p1fZQoaAZoCWgPQwjk27sGvfVxQJSGlFKUaBVNIgFoFkdAm/U0WZZ0S3V9lChoBmgJaA9DCAlP6PXnF3JAlIaUUpRoFU2DAWgWR0Cb9iqY7aIvdX2UKGgGaAloD0MIbHu7JbmyckCUhpRSlGgVTTQBaBZHQJv2pi+cpb51fZQoaAZoCWgPQwgi41Eq4YdvQJSGlFKUaBVNOAFoFkdAm/cVQQ+UyHV9lChoBmgJaA9DCNEgBU8hlHFAlIaUUpRoFU0jAWgWR0Cb9zPAO8TSdX2UKGgGaAloD0MIqMXgYVquckCUhpRSlGgVTSIBaBZHQJv4DAqNIbx1fZQoaAZoCWgPQwjLhjWVBbpwQJSGlFKUaBVNNwFoFkdAm/jDt5UtI3V9lChoBmgJaA9DCGPshJcgAXFAlIaUUpRoFU0lAWgWR0Cb+MdU83dcdX2UKGgGaAloD0MIYviImJLPcECUhpRSlGgVTUEBaBZHQJv5KGN70Ft1fZQoaAZoCWgPQwhanZyh+IRyQJSGlFKUaBVNbgFoFkdAm/lAf+0gKXV9lChoBmgJaA9DCH8uGjIeinFAlIaUUpRoFU0hAWgWR0Cb+U+kxh2GdX2UKGgGaAloD0MI4uXpXNGsb0CUhpRSlGgVTTkBaBZHQJv7WsXBP9F1fZQoaAZoCWgPQwjNdoU+2LxvQJSGlFKUaBVNKQFoFkdAm/uMj3VTaXV9lChoBmgJaA9DCMjPRq4by3BAlIaUUpRoFU0lAWgWR0Cb+/9deIEbdX2UKGgGaAloD0MIwXEZN3URckCUhpRSlGgVTTwBaBZHQJv+2GQCCBh1fZQoaAZoCWgPQwgmHHqLhwBtQJSGlFKUaBVNiAFoFkdAnAAjs6aLGnV9lChoBmgJaA9DCIvdPqtMmHJAlIaUUpRoFU05AWgWR0CcAJWDYh+wdX2UKGgGaAloD0MIVwVqMXjhcUCUhpRSlGgVTS0BaBZHQJwAoO+ZgG91fZQoaAZoCWgPQwg1XU903fJsQJSGlFKUaBVNKQFoFkdAnACgS39aU3V9lChoBmgJaA9DCNmwprIoyW9AlIaUUpRoFU1LAWgWR0CcALQ6IWP+dX2UKGgGaAloD0MIBVH3AYgVc0CUhpRSlGgVTQwBaBZHQJwB8NutOmB1fZQoaAZoCWgPQwgvbTgsjW9uQJSGlFKUaBVNKQFoFkdAnAJZZ4fOlnV9lChoBmgJaA9DCCgrhqsDn29AlIaUUpRoFU1GAWgWR0CcAohzeXRgdX2UKGgGaAloD0MI93XgnJHecUCUhpRSlGgVTTEBaBZHQJwDKnl4keJ1fZQoaAZoCWgPQwjcvHFS2IJwQJSGlFKUaBVNRQFoFkdAnAOb655JLHV9lChoBmgJaA9DCBGLGHYYDWxAlIaUUpRoFU1bAWgWR0CcA9k4FRpDdX2UKGgGaAloD0MIZD4g0FlTckCUhpRSlGgVTSABaBZHQJwEsENe+mF1fZQoaAZoCWgPQwhtq1lnfKFyQJSGlFKUaBVNMQFoFkdAnAVQ3Lmp2nV9lChoBmgJaA9DCMFwrmEGjm5AlIaUUpRoFU0/AWgWR0CcBjybx3FDdX2UKGgGaAloD0MIwHebNw6+cECUhpRSlGgVTREBaBZHQJwbtXgccVB1fZQoaAZoCWgPQwiP4bGfBdVxQJSGlFKUaBVNFgFoFkdAnBv/tIClrXV9lChoBmgJaA9DCGWlSSmoaHFAlIaUUpRoFU0kAWgWR0CcHHqqOtGNdX2UKGgGaAloD0MI5X6HokADbUCUhpRSlGgVTTcBaBZHQJwcwNiH6/J1fZQoaAZoCWgPQwge/wWCAGFtQJSGlFKUaBVNWAFoFkdAnBzLAxi5NHV9lChoBmgJaA9DCIQPJVpyQm1AlIaUUpRoFU01AWgWR0CcHxaTwDvFdX2UKGgGaAloD0MIOQzmr9A/ckCUhpRSlGgVTTEBaBZHQJwfKmO2iL51fZQoaAZoCWgPQwhG66hqQq1xQJSGlFKUaBVNRQFoFkdAnB9Cm/FirnV9lChoBmgJaA9DCErRyr2AD3FAlIaUUpRoFU0RAWgWR0CcH1Ni6QNkdX2UKGgGaAloD0MIEEBqE6cqbUCUhpRSlGgVTXIBaBZHQJwfZNL127p1fZQoaAZoCWgPQwi1/wHW6nBxQJSGlFKUaBVNKgFoFkdAnB+gdGRV63V9lChoBmgJaA9DCKsHzEPmT3BAlIaUUpRoFU0SAWgWR0CcH5xKxs2vdX2UKGgGaAloD0MIKNL9nIKhX0CUhpRSlGgVTTcDaBZHQJwgzJKaodd1fZQoaAZoCWgPQwj52F2gJC1xQJSGlFKUaBVNIQFoFkdAnCDiojv/i3V9lChoBmgJaA9DCDkoYabtJW9AlIaUUpRoFU0VAWgWR0CcISXq7iAEdX2UKGgGaAloD0MIoRNCB13PbkCUhpRSlGgVTSIBaBZHQJwiRTfixV11fZQoaAZoCWgPQwg2ct2UckpwQJSGlFKUaBVNHgFoFkdAnCTHAVO9FnV9lChoBmgJaA9DCGgfK/jtEG9AlIaUUpRoFU0cAWgWR0CcJSUN8VpLdX2UKGgGaAloD0MIIAn7dlJRckCUhpRSlGgVTTMBaBZHQJwlSIDYAbR1fZQoaAZoCWgPQwjmApfHGvNvQJSGlFKUaBVNJQFoFkdAnCXCobXHznV9lChoBmgJaA9DCOQQcXPqMnFAlIaUUpRoFU0HAWgWR0CcJuYrJ8v3dX2UKGgGaAloD0MILPUsCCU4cUCUhpRSlGgVTUkBaBZHQJwnCxiXpnp1fZQoaAZoCWgPQwjD9L2GIB1yQJSGlFKUaBVNGwFoFkdAnCfBRdhRZXV9lChoBmgJaA9DCOtx32qdVHBAlIaUUpRoFU0cAWgWR0CcJ9sZ5zHTdX2UKGgGaAloD0MIt9PWiOANbUCUhpRSlGgVTSEBaBZHQJwn466reZZ1fZQoaAZoCWgPQwjRJLGk3DFuQJSGlFKUaBVNGgFoFkdAnCgbWd3B6HV9lChoBmgJaA9DCNvdA3RfKnNAlIaUUpRoFU0yAWgWR0CcKImgrYoRdX2UKGgGaAloD0MIbk4lA0BncECUhpRSlGgVTS8BaBZHQJwoqxyGSIR1fZQoaAZoCWgPQwhDHVa4ZQZxQJSGlFKUaBVNOQFoFkdAnCpBZpztC3V9lChoBmgJaA9DCE+sU+V7+G5AlIaUUpRoFU0tAWgWR0CcKl2dNFjNdX2UKGgGaAloD0MIhbUxdgJXcUCUhpRSlGgVTSwBaBZHQJwrhbzK9wp1fZQoaAZoCWgPQwjNkgA1NRNxQJSGlFKUaBVNZwFoFkdAnCueyE+PinV9lChoBmgJaA9DCP2k2qejO3FAlIaUUpRoFU0VAWgWR0CcLdnAIppfdX2UKGgGaAloD0MI/wWCAJmabkCUhpRSlGgVTRUBaBZHQJwuTmdRR/F1fZQoaAZoCWgPQwhseeV6m2xwQJSGlFKUaBVNXAFoFkdAnC/qqKgqVnV9lChoBmgJaA9DCAdeLXfm+HBAlIaUUpRoFU0BAWgWR0CcL/9bHIZJdX2UKGgGaAloD0MI/P7NixN7bECUhpRSlGgVTQ4BaBZHQJwwNOLzf791fZQoaAZoCWgPQwgbnIh+7WBwQJSGlFKUaBVNLwFoFkdAnDCGgezUqnV9lChoBmgJaA9DCD+Ne/PbKXBAlIaUUpRoFU08AWgWR0CcMNGKAJ9idX2UKGgGaAloD0MIgC2vXK9KcUCUhpRSlGgVTSQBaBZHQJww6PyTY/V1fZQoaAZoCWgPQwi5GW7A58htQJSGlFKUaBVNJAFoFkdAnDG+y7f513V9lChoBmgJaA9DCA2LUdeaz3BAlIaUUpRoFU0rAWgWR0CcMdFIuoP1dX2UKGgGaAloD0MIhjdr8H7KcECUhpRSlGgVTUkBaBZHQJwx6dGy5Zt1fZQoaAZoCWgPQwg1mIbhY2dwQJSGlFKUaBVNEgFoFkdAnDLD5j6N2nV9lChoBmgJaA9DCP+vOnKkfnBAlIaUUpRoFU0mAWgWR0CcM2TgVGkOdX2UKGgGaAloD0MIbk+Q2O69bECUhpRSlGgVTSUBaBZHQJw0wrUb1h91fZQoaAZoCWgPQwhZhc0AF15vQJSGlFKUaBVNLwFoFkdAnDT5Etuk13V9lChoBmgJaA9DCC6PNSMD5XBAlIaUUpRoFU0sAWgWR0CcN7eAuqWDdX2UKGgGaAloD0MI2Ls/3qsSckCUhpRSlGgVTTwBaBZHQJw30RJ2+wl1fZQoaAZoCWgPQwj9TShEQP1wQJSGlFKUaBVNEAFoFkdAnDk+LWI42nV9lChoBmgJaA9DCKRQFr5+oXJAlIaUUpRoFU0kAWgWR0CcOVD50r9VdX2UKGgGaAloD0MIBwd7E0Oib0CUhpRSlGgVTTIBaBZHQJw5jSpiqhl1fZQoaAZoCWgPQwjZ0M3+gKlxQJSGlFKUaBVNMQFoFkdAnDmXhXKbKHV9lChoBmgJaA9DCPjddMsOJm9AlIaUUpRoFU0BAWgWR0CcOgre67NCdX2UKGgGaAloD0MIsr6ByY1YcUCUhpRSlGgVTTMBaBZHQJw6KgM+eOJ1fZQoaAZoCWgPQwjB5hw8k5BtQJSGlFKUaBVNEgFoFkdAnDphvze41HV9lChoBmgJaA9DCFOu8C7XmnBAlIaUUpRoFU06AWgWR0CcOrZeRgZ1dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
caesar/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:514078cf4153a3e8fa328b0ace424d598023289f3e0a8ff47989df28ec77872f
|
3 |
+
size 87929
|
caesar/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0219aae2a0d2b17f0de3c6258785972d675acce6ef325c343d6dec5a0fa1d1a
|
3 |
+
size 43201
|
caesar/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
caesar/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6259b0cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6259b0cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6259b0cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6259b0ce50>", "_build": "<function ActorCriticPolicy._build at 0x7f6259b0cee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6259b0cf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6259a91040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6259a910d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6259a91160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6259a911f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6259a91280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6259b0b420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671517638344277300, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK1MDb5L26E/XXnnvgAK4b7keTO+Kw3dvQAAAAAAAAAAAO8ZPfk/RD5deQq+xZ9Gvszjar3Qqwi9AAAAAAAAAACNyi4+CvBAP8Ok471Zba6+2IlPPX5k8b0AAAAAAAAAALNizb0uqa4/Wp54viCR5L52c7K9wAvavQAAAAAAAAAA2hfMvQbpoT+2qsi+XaQMv948uL0qbv88AAAAAAAAAABA3YS9OHPUu1o7uzwB0xM9SiYcPXD48r0AAIA/AACAP5PsTb4L56I/9PSfvqyj2b4H5wG+RYFdvAAAAAAAAAAA41d8vlhDcT+bNra+su+6vmHfgb6aJoS9AAAAAAAAAABNYhy9j55Nugse07l2/Y62k7KlOpOD8zgAAIA/AACAP2YMGz2f5d+7fnOKOw7hhzyQn1O9qlplPQAAgD8AAIA/AFQxvU0lsz939ha/M8UavqQ4DDy9ZsW9AAAAAAAAAADTOou+bRhXvTvOo7wDq0+7L3O4PgatEzwAAIA/AACAP80AOr3Zw5c+LmGHvWZjSr4FPhi9PZtjOwAAAAAAAAAAZsEsPWyIgD/Od0O7wVatvr/+0T3wyu65AAAAAAAAAAANIbg9YNcyP/Kokr0x4q2+2nIDPVqV+b0AAAAAAAAAALMEO72zN7I/BcFlviC2i75vl9+8NLMQvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPWL03IIFcECUhpRSlIwBbJRNNgGMAXSUR0Cb7ZqX4TK1dX2UKGgGaAloD0MIb0p5rYSLbkCUhpRSlGgVTQwBaBZHQJvt5SHdoFp1fZQoaAZoCWgPQwgO95FbU0twQJSGlFKUaBVNTgFoFkdAm+537cfvF3V9lChoBmgJaA9DCKnBNAyfdXBAlIaUUpRoFU0fAWgWR0Cb7pzZpSJkdX2UKGgGaAloD0MIrTO+L64obkCUhpRSlGgVTQ0BaBZHQJvvcLRa5gB1fZQoaAZoCWgPQwhzaJHtPJpxQJSGlFKUaBVNMQFoFkdAm++CzgMtsnV9lChoBmgJaA9DCD4/jBAemXBAlIaUUpRoFU1DAWgWR0Cb753QD3dsdX2UKGgGaAloD0MIPZ6WH/jlckCUhpRSlGgVTTUBaBZHQJvv9ruYx+N1fZQoaAZoCWgPQwiS6GUUi/RwQJSGlFKUaBVNDgFoFkdAm/CIwEhaDHV9lChoBmgJaA9DCE4mbhUEI3BAlIaUUpRoFU03AWgWR0Cb8fGetjkNdX2UKGgGaAloD0MIHhuBeN1PcECUhpRSlGgVTWMBaBZHQJvypq59Vm11fZQoaAZoCWgPQwhV203wDXZyQJSGlFKUaBVNGAFoFkdAm/NKlxffGnV9lChoBmgJaA9DCK8I/reSC3BAlIaUUpRoFU0vAWgWR0Cb89vnbItEdX2UKGgGaAloD0MIO4kI/6Kvb0CUhpRSlGgVTRoBaBZHQJvz6lZX+2p1fZQoaAZoCWgPQwjk27sGvfVxQJSGlFKUaBVNIgFoFkdAm/U0WZZ0S3V9lChoBmgJaA9DCAlP6PXnF3JAlIaUUpRoFU2DAWgWR0Cb9iqY7aIvdX2UKGgGaAloD0MIbHu7JbmyckCUhpRSlGgVTTQBaBZHQJv2pi+cpb51fZQoaAZoCWgPQwgi41Eq4YdvQJSGlFKUaBVNOAFoFkdAm/cVQQ+UyHV9lChoBmgJaA9DCNEgBU8hlHFAlIaUUpRoFU0jAWgWR0Cb9zPAO8TSdX2UKGgGaAloD0MIqMXgYVquckCUhpRSlGgVTSIBaBZHQJv4DAqNIbx1fZQoaAZoCWgPQwjLhjWVBbpwQJSGlFKUaBVNNwFoFkdAm/jDt5UtI3V9lChoBmgJaA9DCGPshJcgAXFAlIaUUpRoFU0lAWgWR0Cb+MdU83dcdX2UKGgGaAloD0MIYviImJLPcECUhpRSlGgVTUEBaBZHQJv5KGN70Ft1fZQoaAZoCWgPQwhanZyh+IRyQJSGlFKUaBVNbgFoFkdAm/lAf+0gKXV9lChoBmgJaA9DCH8uGjIeinFAlIaUUpRoFU0hAWgWR0Cb+U+kxh2GdX2UKGgGaAloD0MI4uXpXNGsb0CUhpRSlGgVTTkBaBZHQJv7WsXBP9F1fZQoaAZoCWgPQwjNdoU+2LxvQJSGlFKUaBVNKQFoFkdAm/uMj3VTaXV9lChoBmgJaA9DCMjPRq4by3BAlIaUUpRoFU0lAWgWR0Cb+/9deIEbdX2UKGgGaAloD0MIwXEZN3URckCUhpRSlGgVTTwBaBZHQJv+2GQCCBh1fZQoaAZoCWgPQwgmHHqLhwBtQJSGlFKUaBVNiAFoFkdAnAAjs6aLGnV9lChoBmgJaA9DCIvdPqtMmHJAlIaUUpRoFU05AWgWR0CcAJWDYh+wdX2UKGgGaAloD0MIVwVqMXjhcUCUhpRSlGgVTS0BaBZHQJwAoO+ZgG91fZQoaAZoCWgPQwg1XU903fJsQJSGlFKUaBVNKQFoFkdAnACgS39aU3V9lChoBmgJaA9DCNmwprIoyW9AlIaUUpRoFU1LAWgWR0CcALQ6IWP+dX2UKGgGaAloD0MIBVH3AYgVc0CUhpRSlGgVTQwBaBZHQJwB8NutOmB1fZQoaAZoCWgPQwgvbTgsjW9uQJSGlFKUaBVNKQFoFkdAnAJZZ4fOlnV9lChoBmgJaA9DCCgrhqsDn29AlIaUUpRoFU1GAWgWR0CcAohzeXRgdX2UKGgGaAloD0MI93XgnJHecUCUhpRSlGgVTTEBaBZHQJwDKnl4keJ1fZQoaAZoCWgPQwjcvHFS2IJwQJSGlFKUaBVNRQFoFkdAnAOb655JLHV9lChoBmgJaA9DCBGLGHYYDWxAlIaUUpRoFU1bAWgWR0CcA9k4FRpDdX2UKGgGaAloD0MIZD4g0FlTckCUhpRSlGgVTSABaBZHQJwEsENe+mF1fZQoaAZoCWgPQwhtq1lnfKFyQJSGlFKUaBVNMQFoFkdAnAVQ3Lmp2nV9lChoBmgJaA9DCMFwrmEGjm5AlIaUUpRoFU0/AWgWR0CcBjybx3FDdX2UKGgGaAloD0MIwHebNw6+cECUhpRSlGgVTREBaBZHQJwbtXgccVB1fZQoaAZoCWgPQwiP4bGfBdVxQJSGlFKUaBVNFgFoFkdAnBv/tIClrXV9lChoBmgJaA9DCGWlSSmoaHFAlIaUUpRoFU0kAWgWR0CcHHqqOtGNdX2UKGgGaAloD0MI5X6HokADbUCUhpRSlGgVTTcBaBZHQJwcwNiH6/J1fZQoaAZoCWgPQwge/wWCAGFtQJSGlFKUaBVNWAFoFkdAnBzLAxi5NHV9lChoBmgJaA9DCIQPJVpyQm1AlIaUUpRoFU01AWgWR0CcHxaTwDvFdX2UKGgGaAloD0MIOQzmr9A/ckCUhpRSlGgVTTEBaBZHQJwfKmO2iL51fZQoaAZoCWgPQwhG66hqQq1xQJSGlFKUaBVNRQFoFkdAnB9Cm/FirnV9lChoBmgJaA9DCErRyr2AD3FAlIaUUpRoFU0RAWgWR0CcH1Ni6QNkdX2UKGgGaAloD0MIEEBqE6cqbUCUhpRSlGgVTXIBaBZHQJwfZNL127p1fZQoaAZoCWgPQwi1/wHW6nBxQJSGlFKUaBVNKgFoFkdAnB+gdGRV63V9lChoBmgJaA9DCKsHzEPmT3BAlIaUUpRoFU0SAWgWR0CcH5xKxs2vdX2UKGgGaAloD0MIKNL9nIKhX0CUhpRSlGgVTTcDaBZHQJwgzJKaodd1fZQoaAZoCWgPQwj52F2gJC1xQJSGlFKUaBVNIQFoFkdAnCDiojv/i3V9lChoBmgJaA9DCDkoYabtJW9AlIaUUpRoFU0VAWgWR0CcISXq7iAEdX2UKGgGaAloD0MIoRNCB13PbkCUhpRSlGgVTSIBaBZHQJwiRTfixV11fZQoaAZoCWgPQwg2ct2UckpwQJSGlFKUaBVNHgFoFkdAnCTHAVO9FnV9lChoBmgJaA9DCGgfK/jtEG9AlIaUUpRoFU0cAWgWR0CcJSUN8VpLdX2UKGgGaAloD0MIIAn7dlJRckCUhpRSlGgVTTMBaBZHQJwlSIDYAbR1fZQoaAZoCWgPQwjmApfHGvNvQJSGlFKUaBVNJQFoFkdAnCXCobXHznV9lChoBmgJaA9DCOQQcXPqMnFAlIaUUpRoFU0HAWgWR0CcJuYrJ8v3dX2UKGgGaAloD0MILPUsCCU4cUCUhpRSlGgVTUkBaBZHQJwnCxiXpnp1fZQoaAZoCWgPQwjD9L2GIB1yQJSGlFKUaBVNGwFoFkdAnCfBRdhRZXV9lChoBmgJaA9DCOtx32qdVHBAlIaUUpRoFU0cAWgWR0CcJ9sZ5zHTdX2UKGgGaAloD0MIt9PWiOANbUCUhpRSlGgVTSEBaBZHQJwn466reZZ1fZQoaAZoCWgPQwjRJLGk3DFuQJSGlFKUaBVNGgFoFkdAnCgbWd3B6HV9lChoBmgJaA9DCNvdA3RfKnNAlIaUUpRoFU0yAWgWR0CcKImgrYoRdX2UKGgGaAloD0MIbk4lA0BncECUhpRSlGgVTS8BaBZHQJwoqxyGSIR1fZQoaAZoCWgPQwhDHVa4ZQZxQJSGlFKUaBVNOQFoFkdAnCpBZpztC3V9lChoBmgJaA9DCE+sU+V7+G5AlIaUUpRoFU0tAWgWR0CcKl2dNFjNdX2UKGgGaAloD0MIhbUxdgJXcUCUhpRSlGgVTSwBaBZHQJwrhbzK9wp1fZQoaAZoCWgPQwjNkgA1NRNxQJSGlFKUaBVNZwFoFkdAnCueyE+PinV9lChoBmgJaA9DCP2k2qejO3FAlIaUUpRoFU0VAWgWR0CcLdnAIppfdX2UKGgGaAloD0MI/wWCAJmabkCUhpRSlGgVTRUBaBZHQJwuTmdRR/F1fZQoaAZoCWgPQwhseeV6m2xwQJSGlFKUaBVNXAFoFkdAnC/qqKgqVnV9lChoBmgJaA9DCAdeLXfm+HBAlIaUUpRoFU0BAWgWR0CcL/9bHIZJdX2UKGgGaAloD0MI/P7NixN7bECUhpRSlGgVTQ4BaBZHQJwwNOLzf791fZQoaAZoCWgPQwgbnIh+7WBwQJSGlFKUaBVNLwFoFkdAnDCGgezUqnV9lChoBmgJaA9DCD+Ne/PbKXBAlIaUUpRoFU08AWgWR0CcMNGKAJ9idX2UKGgGaAloD0MIgC2vXK9KcUCUhpRSlGgVTSQBaBZHQJww6PyTY/V1fZQoaAZoCWgPQwi5GW7A58htQJSGlFKUaBVNJAFoFkdAnDG+y7f513V9lChoBmgJaA9DCA2LUdeaz3BAlIaUUpRoFU0rAWgWR0CcMdFIuoP1dX2UKGgGaAloD0MIhjdr8H7KcECUhpRSlGgVTUkBaBZHQJwx6dGy5Zt1fZQoaAZoCWgPQwg1mIbhY2dwQJSGlFKUaBVNEgFoFkdAnDLD5j6N2nV9lChoBmgJaA9DCP+vOnKkfnBAlIaUUpRoFU0mAWgWR0CcM2TgVGkOdX2UKGgGaAloD0MIbk+Q2O69bECUhpRSlGgVTSUBaBZHQJw0wrUb1h91fZQoaAZoCWgPQwhZhc0AF15vQJSGlFKUaBVNLwFoFkdAnDT5Etuk13V9lChoBmgJaA9DCC6PNSMD5XBAlIaUUpRoFU0sAWgWR0CcN7eAuqWDdX2UKGgGaAloD0MI2Ls/3qsSckCUhpRSlGgVTTwBaBZHQJw30RJ2+wl1fZQoaAZoCWgPQwj9TShEQP1wQJSGlFKUaBVNEAFoFkdAnDk+LWI42nV9lChoBmgJaA9DCKRQFr5+oXJAlIaUUpRoFU0kAWgWR0CcOVD50r9VdX2UKGgGaAloD0MIBwd7E0Oib0CUhpRSlGgVTTIBaBZHQJw5jSpiqhl1fZQoaAZoCWgPQwjZ0M3+gKlxQJSGlFKUaBVNMQFoFkdAnDmXhXKbKHV9lChoBmgJaA9DCPjddMsOJm9AlIaUUpRoFU0BAWgWR0CcOgre67NCdX2UKGgGaAloD0MIsr6ByY1YcUCUhpRSlGgVTTMBaBZHQJw6KgM+eOJ1fZQoaAZoCWgPQwjB5hw8k5BtQJSGlFKUaBVNEgFoFkdAnDphvze41HV9lChoBmgJaA9DCFOu8C7XmnBAlIaUUpRoFU06AWgWR0CcOrZeRgZ1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (234 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 270.66687712220835, "std_reward": 20.455247719015553, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T07:05:48.481178"}
|