Gokulapriyan commited on
Commit
a061336
·
1 Parent(s): ee3c75f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vit-base-patch16-224-finetuned-main-gpu-30e-final
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: validation
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9938775510204082
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # vit-base-patch16-224-finetuned-main-gpu-30e-final
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.0211
35
+ - Accuracy: 0.9939
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 30
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
69
+ | 0.5113 | 1.0 | 551 | 0.4745 | 0.7971 |
70
+ | 0.3409 | 2.0 | 1102 | 0.2697 | 0.8961 |
71
+ | 0.2675 | 3.0 | 1653 | 0.1611 | 0.9381 |
72
+ | 0.2092 | 4.0 | 2204 | 0.1176 | 0.9548 |
73
+ | 0.2008 | 5.0 | 2755 | 0.0889 | 0.9656 |
74
+ | 0.1555 | 6.0 | 3306 | 0.0666 | 0.9759 |
75
+ | 0.1614 | 7.0 | 3857 | 0.0576 | 0.9778 |
76
+ | 0.1518 | 8.0 | 4408 | 0.0517 | 0.9814 |
77
+ | 0.1231 | 9.0 | 4959 | 0.0528 | 0.9812 |
78
+ | 0.1076 | 10.0 | 5510 | 0.0426 | 0.9850 |
79
+ | 0.0953 | 11.0 | 6061 | 0.0634 | 0.9795 |
80
+ | 0.1097 | 12.0 | 6612 | 0.0398 | 0.9860 |
81
+ | 0.0763 | 13.0 | 7163 | 0.0348 | 0.9866 |
82
+ | 0.0895 | 14.0 | 7714 | 0.0341 | 0.9884 |
83
+ | 0.06 | 15.0 | 8265 | 0.0381 | 0.9883 |
84
+ | 0.0767 | 16.0 | 8816 | 0.0382 | 0.9875 |
85
+ | 0.0868 | 17.0 | 9367 | 0.0309 | 0.9898 |
86
+ | 0.091 | 18.0 | 9918 | 0.0339 | 0.9885 |
87
+ | 0.0817 | 19.0 | 10469 | 0.0243 | 0.9913 |
88
+ | 0.0641 | 20.0 | 11020 | 0.0286 | 0.9906 |
89
+ | 0.0703 | 21.0 | 11571 | 0.0314 | 0.9906 |
90
+ | 0.0642 | 22.0 | 12122 | 0.0261 | 0.9913 |
91
+ | 0.0695 | 23.0 | 12673 | 0.0260 | 0.9920 |
92
+ | 0.0664 | 24.0 | 13224 | 0.0241 | 0.9928 |
93
+ | 0.0552 | 25.0 | 13775 | 0.0258 | 0.9928 |
94
+ | 0.056 | 26.0 | 14326 | 0.0230 | 0.9939 |
95
+ | 0.0488 | 27.0 | 14877 | 0.0221 | 0.9936 |
96
+ | 0.0389 | 28.0 | 15428 | 0.0225 | 0.9930 |
97
+ | 0.0402 | 29.0 | 15979 | 0.0231 | 0.9940 |
98
+ | 0.0424 | 30.0 | 16530 | 0.0211 | 0.9939 |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.26.1
104
+ - Pytorch 1.13.1+cu116
105
+ - Datasets 2.10.1
106
+ - Tokenizers 0.13.2