Commit
·
a061336
1
Parent(s):
ee3c75f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: vit-base-patch16-224-finetuned-main-gpu-30e-final
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: validation
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9938775510204082
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# vit-base-patch16-224-finetuned-main-gpu-30e-final
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0211
|
35 |
+
- Accuracy: 0.9939
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 128
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 30
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
69 |
+
| 0.5113 | 1.0 | 551 | 0.4745 | 0.7971 |
|
70 |
+
| 0.3409 | 2.0 | 1102 | 0.2697 | 0.8961 |
|
71 |
+
| 0.2675 | 3.0 | 1653 | 0.1611 | 0.9381 |
|
72 |
+
| 0.2092 | 4.0 | 2204 | 0.1176 | 0.9548 |
|
73 |
+
| 0.2008 | 5.0 | 2755 | 0.0889 | 0.9656 |
|
74 |
+
| 0.1555 | 6.0 | 3306 | 0.0666 | 0.9759 |
|
75 |
+
| 0.1614 | 7.0 | 3857 | 0.0576 | 0.9778 |
|
76 |
+
| 0.1518 | 8.0 | 4408 | 0.0517 | 0.9814 |
|
77 |
+
| 0.1231 | 9.0 | 4959 | 0.0528 | 0.9812 |
|
78 |
+
| 0.1076 | 10.0 | 5510 | 0.0426 | 0.9850 |
|
79 |
+
| 0.0953 | 11.0 | 6061 | 0.0634 | 0.9795 |
|
80 |
+
| 0.1097 | 12.0 | 6612 | 0.0398 | 0.9860 |
|
81 |
+
| 0.0763 | 13.0 | 7163 | 0.0348 | 0.9866 |
|
82 |
+
| 0.0895 | 14.0 | 7714 | 0.0341 | 0.9884 |
|
83 |
+
| 0.06 | 15.0 | 8265 | 0.0381 | 0.9883 |
|
84 |
+
| 0.0767 | 16.0 | 8816 | 0.0382 | 0.9875 |
|
85 |
+
| 0.0868 | 17.0 | 9367 | 0.0309 | 0.9898 |
|
86 |
+
| 0.091 | 18.0 | 9918 | 0.0339 | 0.9885 |
|
87 |
+
| 0.0817 | 19.0 | 10469 | 0.0243 | 0.9913 |
|
88 |
+
| 0.0641 | 20.0 | 11020 | 0.0286 | 0.9906 |
|
89 |
+
| 0.0703 | 21.0 | 11571 | 0.0314 | 0.9906 |
|
90 |
+
| 0.0642 | 22.0 | 12122 | 0.0261 | 0.9913 |
|
91 |
+
| 0.0695 | 23.0 | 12673 | 0.0260 | 0.9920 |
|
92 |
+
| 0.0664 | 24.0 | 13224 | 0.0241 | 0.9928 |
|
93 |
+
| 0.0552 | 25.0 | 13775 | 0.0258 | 0.9928 |
|
94 |
+
| 0.056 | 26.0 | 14326 | 0.0230 | 0.9939 |
|
95 |
+
| 0.0488 | 27.0 | 14877 | 0.0221 | 0.9936 |
|
96 |
+
| 0.0389 | 28.0 | 15428 | 0.0225 | 0.9930 |
|
97 |
+
| 0.0402 | 29.0 | 15979 | 0.0231 | 0.9940 |
|
98 |
+
| 0.0424 | 30.0 | 16530 | 0.0211 | 0.9939 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.26.1
|
104 |
+
- Pytorch 1.13.1+cu116
|
105 |
+
- Datasets 2.10.1
|
106 |
+
- Tokenizers 0.13.2
|