--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-new_dataset_50e results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7837837837837838 --- # swin-tiny-patch4-window7-224-finetuned-new_dataset_50e This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7626 - Accuracy: 0.7838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.94 | 4 | 0.5406 | 0.7568 | | No log | 1.94 | 8 | 0.5781 | 0.7297 | | 0.369 | 2.94 | 12 | 0.5188 | 0.7568 | | 0.369 | 3.94 | 16 | 0.4889 | 0.7703 | | 0.3889 | 4.94 | 20 | 0.4707 | 0.7703 | | 0.3889 | 5.94 | 24 | 0.4914 | 0.7703 | | 0.3889 | 6.94 | 28 | 0.6717 | 0.7432 | | 0.3537 | 7.94 | 32 | 0.6126 | 0.7973 | | 0.3537 | 8.94 | 36 | 0.5298 | 0.7568 | | 0.3356 | 9.94 | 40 | 0.5882 | 0.7432 | | 0.3356 | 10.94 | 44 | 0.5746 | 0.7432 | | 0.3356 | 11.94 | 48 | 0.6622 | 0.7297 | | 0.3231 | 12.94 | 52 | 0.5718 | 0.7703 | | 0.3231 | 13.94 | 56 | 0.7128 | 0.7297 | | 0.3732 | 14.94 | 60 | 0.5254 | 0.7838 | | 0.3732 | 15.94 | 64 | 0.7287 | 0.7162 | | 0.3732 | 16.94 | 68 | 0.5491 | 0.7568 | | 0.3704 | 17.94 | 72 | 0.6270 | 0.8108 | | 0.3704 | 18.94 | 76 | 0.5768 | 0.7973 | | 0.3005 | 19.94 | 80 | 0.5718 | 0.7568 | | 0.3005 | 20.94 | 84 | 0.6060 | 0.7838 | | 0.3005 | 21.94 | 88 | 0.6006 | 0.7568 | | 0.2739 | 22.94 | 92 | 0.5254 | 0.7703 | | 0.2739 | 23.94 | 96 | 0.6768 | 0.7297 | | 0.2627 | 24.94 | 100 | 0.6552 | 0.7838 | | 0.2627 | 25.94 | 104 | 0.6359 | 0.7568 | | 0.2627 | 26.94 | 108 | 0.6695 | 0.7568 | | 0.2573 | 27.94 | 112 | 0.6321 | 0.7838 | | 0.2573 | 28.94 | 116 | 0.6559 | 0.7973 | | 0.2336 | 29.94 | 120 | 0.7345 | 0.7838 | | 0.2336 | 30.94 | 124 | 0.6289 | 0.7703 | | 0.2336 | 31.94 | 128 | 0.8608 | 0.6892 | | 0.2126 | 32.94 | 132 | 0.8152 | 0.7838 | | 0.2126 | 33.94 | 136 | 0.9124 | 0.7162 | | 0.2 | 34.94 | 140 | 0.7841 | 0.7703 | | 0.2 | 35.94 | 144 | 0.7741 | 0.7838 | | 0.2 | 36.94 | 148 | 0.7580 | 0.7973 | | 0.1858 | 37.94 | 152 | 0.7781 | 0.7973 | | 0.1858 | 38.94 | 156 | 0.7539 | 0.7568 | | 0.1806 | 39.94 | 160 | 0.7460 | 0.7703 | | 0.1806 | 40.94 | 164 | 0.7814 | 0.7703 | | 0.1806 | 41.94 | 168 | 0.7745 | 0.7973 | | 0.1771 | 42.94 | 172 | 0.7551 | 0.7838 | | 0.1771 | 43.94 | 176 | 0.7821 | 0.7838 | | 0.1649 | 44.94 | 180 | 0.7822 | 0.7703 | | 0.1649 | 45.94 | 184 | 0.7580 | 0.7838 | | 0.1649 | 46.94 | 188 | 0.7376 | 0.7703 | | 0.1711 | 47.94 | 192 | 0.7495 | 0.7703 | | 0.1711 | 48.94 | 196 | 0.7561 | 0.7703 | | 0.1579 | 49.94 | 200 | 0.7626 | 0.7838 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2