--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-tiny-patch16-224-finetuned-og-dataset-10e results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9481739412098146 --- # deit-tiny-patch16-224-finetuned-og-dataset-10e This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1402 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5434 | 1.0 | 364 | 0.4649 | 0.8004 | | 0.3968 | 2.0 | 728 | 0.3146 | 0.8713 | | 0.3075 | 3.0 | 1092 | 0.2477 | 0.9012 | | 0.2961 | 4.0 | 1456 | 0.1774 | 0.9335 | | 0.2523 | 5.0 | 1820 | 0.1559 | 0.9422 | | 0.2304 | 6.0 | 2184 | 0.1402 | 0.9482 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2