--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: LLM_Teach_Bart results: [] --- # LLM_Teach_Bart This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8314 - Rouge1: 0.4848 - Rouge2: 0.215 - Rougel: 0.3765 - Rougelsum: 0.3762 - Gen Len: 44.2945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.7164 | 1.0 | 625 | 1.7203 | 0.4724 | 0.2088 | 0.3677 | 0.3675 | 44.1491 | | 1.3424 | 2.0 | 1250 | 1.6998 | 0.4841 | 0.2167 | 0.3705 | 0.3699 | 45.3727 | | 1.1171 | 3.0 | 1875 | 1.7546 | 0.4824 | 0.2144 | 0.3735 | 0.3735 | 43.7636 | | 0.8193 | 4.0 | 2500 | 1.8314 | 0.4848 | 0.215 | 0.3765 | 0.3762 | 44.2945 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.0