--- license: mit tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large_ner_wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: en metrics: - name: Precision type: precision value: 0.8462551098177787 - name: Recall type: recall value: 0.8634242895518167 - name: F1 type: f1 value: 0.8547534903250638 - name: Accuracy type: accuracy value: 0.9382388000397338 --- # roberta-large_ner_wikiann This model is a fine-tuned version of [roberta-large](https://huggingface.co./roberta-large) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2783 - Precision: 0.8463 - Recall: 0.8634 - F1: 0.8548 - Accuracy: 0.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3395 | 1.0 | 1250 | 0.2652 | 0.8039 | 0.8308 | 0.8171 | 0.9242 | | 0.2343 | 2.0 | 2500 | 0.2431 | 0.8354 | 0.8503 | 0.8428 | 0.9329 | | 0.1721 | 3.0 | 3750 | 0.2315 | 0.8330 | 0.8503 | 0.8416 | 0.9352 | | 0.1156 | 4.0 | 5000 | 0.2709 | 0.8477 | 0.8634 | 0.8554 | 0.9385 | | 0.1026 | 5.0 | 6250 | 0.2783 | 0.8463 | 0.8634 | 0.8548 | 0.9382 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1