--- license: mit tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: microsoft-deberta-v3-large_ner_wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: en split: train args: en metrics: - name: Precision type: precision value: 0.8557286258220838 - name: Recall type: recall value: 0.8738159196946134 - name: F1 type: f1 value: 0.8646776957783918 - name: Accuracy type: accuracy value: 0.9406352438660972 --- # microsoft-deberta-v3-large_ner_wikiann This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3108 - Precision: 0.8557 - Recall: 0.8738 - F1: 0.8647 - Accuracy: 0.9406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3005 | 1.0 | 1250 | 0.2462 | 0.8205 | 0.8400 | 0.8301 | 0.9294 | | 0.1931 | 2.0 | 2500 | 0.2247 | 0.8448 | 0.8630 | 0.8538 | 0.9386 | | 0.1203 | 3.0 | 3750 | 0.2341 | 0.8468 | 0.8693 | 0.8579 | 0.9403 | | 0.0635 | 4.0 | 5000 | 0.2948 | 0.8596 | 0.8745 | 0.8670 | 0.9411 | | 0.0451 | 5.0 | 6250 | 0.3108 | 0.8557 | 0.8738 | 0.8647 | 0.9406 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2