Gladiator commited on
Commit
96b7f32
1 Parent(s): 7b3d647

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikiann
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: microsoft-deberta-v3-large_ner_wikiann
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wikiann
20
+ type: wikiann
21
+ config: en
22
+ split: train
23
+ args: en
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8557286258220838
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8738159196946134
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8646776957783918
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9406352438660972
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # microsoft-deberta-v3-large_ner_wikiann
43
+
44
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the wikiann dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.3108
47
+ - Precision: 0.8557
48
+ - Recall: 0.8738
49
+ - F1: 0.8647
50
+ - Accuracy: 0.9406
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: cosine
75
+ - num_epochs: 5
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.3005 | 1.0 | 1250 | 0.2462 | 0.8205 | 0.8400 | 0.8301 | 0.9294 |
82
+ | 0.1931 | 2.0 | 2500 | 0.2247 | 0.8448 | 0.8630 | 0.8538 | 0.9386 |
83
+ | 0.1203 | 3.0 | 3750 | 0.2341 | 0.8468 | 0.8693 | 0.8579 | 0.9403 |
84
+ | 0.0635 | 4.0 | 5000 | 0.2948 | 0.8596 | 0.8745 | 0.8670 | 0.9411 |
85
+ | 0.0451 | 5.0 | 6250 | 0.3108 | 0.8557 | 0.8738 | 0.8647 | 0.9406 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.24.0
91
+ - Pytorch 1.13.0+cu117
92
+ - Datasets 2.7.1
93
+ - Tokenizers 0.13.2