--- tags: - merge - mergekit - lazymergekit - WizardLM/WizardMath-7B-V1.1 - AurelPx/Percival_01-7b-slerp - Weyaxi/Einstein-v4-7B - Kukedlc/NeuralMaths-Experiment-7b - Gille/StrangeMerges_35-7B-slerp base_model: - WizardLM/WizardMath-7B-V1.1 - AurelPx/Percival_01-7b-slerp - Weyaxi/Einstein-v4-7B - Kukedlc/NeuralMaths-Experiment-7b - Gille/StrangeMerges_35-7B-slerp --- # StrangeMerges_52-7B-dare_ties StrangeMerges_52-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co./WizardLM/WizardMath-7B-V1.1) * [AurelPx/Percival_01-7b-slerp](https://huggingface.co./AurelPx/Percival_01-7b-slerp) * [Weyaxi/Einstein-v4-7B](https://huggingface.co./Weyaxi/Einstein-v4-7B) * [Kukedlc/NeuralMaths-Experiment-7b](https://huggingface.co./Kukedlc/NeuralMaths-Experiment-7b) * [Gille/StrangeMerges_35-7B-slerp](https://huggingface.co./Gille/StrangeMerges_35-7B-slerp) ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_51-7B-dare_ties # No parameters necessary for base model - model: WizardLM/WizardMath-7B-V1.1 parameters: density: 0.66 weight: 0.2 - model: AurelPx/Percival_01-7b-slerp parameters: density: 0.55 weight: 0.2 - model: Weyaxi/Einstein-v4-7B parameters: density: 0.55 weight: 0.2 - model: Kukedlc/NeuralMaths-Experiment-7b parameters: density: 0.44 weight: 0.2 - model: Gille/StrangeMerges_35-7B-slerp parameters: density: 0.66 weight: 0.2 merge_method: dare_ties base_model: Gille/StrangeMerges_51-7B-dare_ties parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_52-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```