--- license: mit base_model: bert-base-german-cased tags: - generated_from_trainer metrics: - f1 model-index: - name: Misinformation-Covid-LowLearningRatebert-base-german-cased results: [] --- # Misinformation-Covid-LowLearningRatebert-base-german-cased This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co./bert-base-german-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5151 - F1: 0.3793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6534 | 1.0 | 189 | 0.6298 | 0.1000 | | 0.6467 | 2.0 | 378 | 0.6222 | 0.1379 | | 0.6302 | 3.0 | 567 | 0.6121 | 0.0784 | | 0.6259 | 4.0 | 756 | 0.6042 | 0.0870 | | 0.6255 | 5.0 | 945 | 0.5987 | 0.0870 | | 0.6091 | 6.0 | 1134 | 0.5922 | 0.0909 | | 0.6237 | 7.0 | 1323 | 0.5881 | 0.1224 | | 0.6019 | 8.0 | 1512 | 0.5826 | 0.1277 | | 0.6038 | 9.0 | 1701 | 0.5779 | 0.2 | | 0.5996 | 10.0 | 1890 | 0.5730 | 0.1961 | | 0.5858 | 11.0 | 2079 | 0.5678 | 0.2353 | | 0.5794 | 12.0 | 2268 | 0.5636 | 0.24 | | 0.5806 | 13.0 | 2457 | 0.5587 | 0.2264 | | 0.5586 | 14.0 | 2646 | 0.5548 | 0.24 | | 0.5682 | 15.0 | 2835 | 0.5514 | 0.24 | | 0.5631 | 16.0 | 3024 | 0.5471 | 0.2353 | | 0.5603 | 17.0 | 3213 | 0.5425 | 0.2593 | | 0.5437 | 18.0 | 3402 | 0.5393 | 0.2593 | | 0.5439 | 19.0 | 3591 | 0.5368 | 0.2642 | | 0.547 | 20.0 | 3780 | 0.5329 | 0.2909 | | 0.5408 | 21.0 | 3969 | 0.5297 | 0.3158 | | 0.5327 | 22.0 | 4158 | 0.5270 | 0.3158 | | 0.5194 | 23.0 | 4347 | 0.5256 | 0.3214 | | 0.5206 | 24.0 | 4536 | 0.5227 | 0.3214 | | 0.516 | 25.0 | 4725 | 0.5205 | 0.3214 | | 0.5103 | 26.0 | 4914 | 0.5191 | 0.3214 | | 0.5037 | 27.0 | 5103 | 0.5172 | 0.3214 | | 0.4974 | 28.0 | 5292 | 0.5180 | 0.3214 | | 0.5116 | 29.0 | 5481 | 0.5156 | 0.3214 | | 0.5006 | 30.0 | 5670 | 0.5150 | 0.3214 | | 0.509 | 31.0 | 5859 | 0.5141 | 0.3214 | | 0.4832 | 32.0 | 6048 | 0.5150 | 0.3273 | | 0.4877 | 33.0 | 6237 | 0.5133 | 0.3214 | | 0.49 | 34.0 | 6426 | 0.5131 | 0.3158 | | 0.4827 | 35.0 | 6615 | 0.5143 | 0.3214 | | 0.4986 | 36.0 | 6804 | 0.5125 | 0.3214 | | 0.4794 | 37.0 | 6993 | 0.5131 | 0.3793 | | 0.4809 | 38.0 | 7182 | 0.5137 | 0.3793 | | 0.4929 | 39.0 | 7371 | 0.5114 | 0.3793 | | 0.465 | 40.0 | 7560 | 0.5135 | 0.3793 | | 0.4867 | 41.0 | 7749 | 0.5121 | 0.3793 | | 0.4685 | 42.0 | 7938 | 0.5129 | 0.3793 | | 0.4643 | 43.0 | 8127 | 0.5142 | 0.3793 | | 0.4804 | 44.0 | 8316 | 0.5144 | 0.3793 | | 0.4779 | 45.0 | 8505 | 0.5141 | 0.3793 | | 0.4701 | 46.0 | 8694 | 0.5139 | 0.3793 | | 0.4619 | 47.0 | 8883 | 0.5146 | 0.3793 | | 0.4558 | 48.0 | 9072 | 0.5151 | 0.3793 | | 0.4824 | 49.0 | 9261 | 0.5152 | 0.3793 | | 0.4758 | 50.0 | 9450 | 0.5151 | 0.3793 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.3