--- base_model: Geraldine/FineLlama-3.2-3B-Instruct-ead library_name: transformers pipeline_tag: text-generation tags: - openvino - openvino-export license: llama3.2 --- # FineLlama-3.2-3B-Instruct-ead-openvino This model was converted to OpenVINO from [`Geraldine/FineLlama-3.2-3B-Instruct-ead`](https://huggingface.co./Geraldine/FineLlama-3.2-3B-Instruct-ead) using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [export](https://huggingface.co./spaces/echarlaix/openvino-export) space. ## Model Description - **Original Model**: Geraldine/FineLlama-3.2-3B-Instruct-ead - **Framework**: OpenVINO - **Task**: Text Generation, EAD tag generation - **Language**: English - **License**: llama3.2 ## Features - Optimized for Intel hardware using OpenVINO - Supports text generation inference - Maintains original model capabilities for EAD tag generation - Integration with PyTorch ## Installation First make sure you have optimum-intel installed: ```bash pip install optimum[openvino] ``` To load your model you can do as follows: ```python from optimum.intel import OVModelForCausalLM model_id = "Geraldine/FineLlama-3.2-3B-Instruct-ead-openvino" model = OVModelForCausalLM.from_pretrained(model_id) ``` ## Technical Specifications ### Supported Features - Text Generation - Transformers integration - PyTorch compatibility - OpenVINO export - Inference Endpoints - Conversational capabilities ### Model Architecture - Base: meta-llama/Llama-3.2-3B-Instruct - Fine-tuned: Geraldine/FineLlama-3.2-3B-Instruct-ead - Final conversion: OpenVINO optimization ## Usage Examples ```python from optimum.intel import OVModelForCausalLM from transformers import AutoTokenizer # Load model and tokenizer model_id = "Geraldine/FineLlama-3.2-3B-Instruct-ead-openvino" model = OVModelForCausalLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) # Generate text def generate_ead(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) return tokenizer.decode(outputs[0]) ```