--- license: apache-2.0 language: - en library_name: transformers --- # Model Card: bart_fine_tuned_model ## Model Name ## generate_summaries ### Model Description This model represents a fine-tuned version of the facebook/bart-large model, specifically adapted for the task of Resume Summarization. The model has been trained to efficiently generate concise and relevant summaries from extensive resume texts. The fine-tuning process has tailored the original BART model to specialize in summarization tasks based on a specific dataset. ### Model information -**Base Model: GebeyaTalent/generate_summaries** -**Finetuning Dataset: To be made available in the future.** ### Training Parameters - **Evaluation Strategy: epoch:** - **Learning Rate: 5e-5** - **Per Device Train Batch Size: 8:** - **Per Device Eval Batch Size: 8** - **Weight Decay: 0.01** - **Save Total Limit: 5** - **Number of Training Epochs: 10** - **Predict with Generate: True** - **Gradient Accumulation Steps: 1** - **Optimizer: paged_adamw_32bit** - **Learning Rate Scheduler Type: cosine** ## how to use **1.** Install the transformers library: **pip install transformers** **2.** Import the necessary modules: import torch from transformers import BartTokenizer, BartForConditionalGeneration **3.** Initialize the model and tokenizer: model_name = 'GebeyaTalent/generate_summaries' tokenizer = BartTokenizer.from_pretrained(model_name) model = BartForConditionalGeneration.from_pretrained(model_name) **4.** Prepare the text for summarization: text = 'Your resume text here' inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length") **5.** Generate the summary: min_length_threshold = 55 summary_ids = model.generate(inputs["input_ids"], num_beams=4, min_length=min_length_threshold, max_length=150, early_stopping=True) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) **6.** Output the summary: print("Summary:", summary) ## Model Card Authors Dereje Hinsermu ## Model Card Contact