Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,99 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
library_name: transformers
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
tags:
|
10 |
+
- agriculture
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
widget:
|
15 |
+
- text: "paddy pest"
|
16 |
+
example_title: "Example- pest"
|
17 |
+
- text: "how do I apply for PM-Kisan"
|
18 |
+
example_title: "Example- scheme"
|
19 |
+
- text: "Will it rain today"
|
20 |
+
example_title: "Example- weather"
|
21 |
---
|
22 |
+
|
23 |
+
# Agri-flow Classification Model
|
24 |
+
|
25 |
+
This model classifies grievances into five distinct buckets:
|
26 |
+
|
27 |
+
- agricultural_scheme
|
28 |
+
- agriculture
|
29 |
+
- pest
|
30 |
+
- seed
|
31 |
+
- weather
|
32 |
+
- price
|
33 |
+
- non_agri
|
34 |
+
|
35 |
+
## Description of the Buckets
|
36 |
+
|
37 |
+
1. **agricultural_scheme**:
|
38 |
+
The farmer query is about schemes in Odisha
|
39 |
+
|
40 |
+
2. **agriculture**:
|
41 |
+
General agri queries
|
42 |
+
|
43 |
+
3. **pest**:
|
44 |
+
The farmer query is about pests
|
45 |
+
|
46 |
+
4. **seed**:
|
47 |
+
The farmer query is about seed varieties
|
48 |
+
|
49 |
+
5. **weather** :
|
50 |
+
The farmer query is asking about the weather for a district /place
|
51 |
+
e.g. : 'What's the weather forecast for Sundargarh?'
|
52 |
+
|
53 |
+
6. **price** :
|
54 |
+
The farmer query is asking about the price of some crop
|
55 |
+
e.g. 'Price for paddy'
|
56 |
+
|
57 |
+
6. **non_agri** :
|
58 |
+
The farmer query is just some salutation or unrelated to agri
|
59 |
+
|
60 |
+
|
61 |
+
## Training Metrics
|
62 |
+
|
63 |
+
Epoch 1/1000 - Loss: 0.8210 - Accuracy: 0.7443 - F1 Score: 0.7360
|
64 |
+
Validation Accuracy: 0.9037
|
65 |
+
Validation F1 Score: 0.9022
|
66 |
+
Epoch 2/1000 - Loss: 0.2868 - Accuracy: 0.9199 - F1 Score: 0.9197
|
67 |
+
Validation Accuracy: 0.9241
|
68 |
+
Validation F1 Score: 0.9236
|
69 |
+
Epoch 3/1000 - Loss: 0.1620 - Accuracy: 0.9536 - F1 Score: 0.9534
|
70 |
+
Validation Accuracy: 0.9408
|
71 |
+
Validation F1 Score: 0.9407
|
72 |
+
Epoch 4/1000 - Loss: 0.0975 - Accuracy: 0.9698 - F1 Score: 0.9698
|
73 |
+
Validation Accuracy: 0.9457
|
74 |
+
Validation F1 Score: 0.9461
|
75 |
+
Epoch 5/1000 - Loss: 0.0722 - Accuracy: 0.9777 - F1 Score: 0.9777
|
76 |
+
Validation Accuracy: 0.9518
|
77 |
+
Validation F1 Score: 0.9520
|
78 |
+
Epoch 6/1000 - Loss: 0.0570 - Accuracy: 0.9801 - F1 Score: 0.9801
|
79 |
+
Validation Accuracy: 0.9574
|
80 |
+
Validation F1 Score: 0.9573
|
81 |
+
Epoch 7/1000 - Loss: 0.0426 - Accuracy: 0.9838 - F1 Score: 0.9838
|
82 |
+
Validation Accuracy: 0.9601
|
83 |
+
Validation F1 Score: 0.9601
|
84 |
+
Epoch 8/1000 - Loss: 0.0403 - Accuracy: 0.9850 - F1 Score: 0.9850
|
85 |
+
Validation Accuracy: 0.9646
|
86 |
+
Validation F1 Score: 0.9646
|
87 |
+
Epoch 9/1000 - Loss: 0.0340 - Accuracy: 0.9853 - F1 Score: 0.9853
|
88 |
+
Validation Accuracy: 0.9623
|
89 |
+
Validation F1 Score: 0.9624
|
90 |
+
Epoch 10/1000 - Loss: 0.0307 - Accuracy: 0.9857 - F1 Score: 0.9857
|
91 |
+
Validation Accuracy: 0.9640
|
92 |
+
Validation F1 Score: 0.9640
|
93 |
+
Epoch 11/1000 - Loss: 0.0297 - Accuracy: 0.9873 - F1 Score: 0.9873
|
94 |
+
Validation Accuracy: 0.9618
|
95 |
+
Validation F1 Score: 0.9618
|
96 |
+
Epoch 12/1000 - Loss: 0.0279 - Accuracy: 0.9867 - F1 Score: 0.9867
|
97 |
+
Validation Accuracy: 0.9607
|
98 |
+
Validation F1 Score: 0.9607
|
99 |
+
|