GautamR commited on
Commit
ec3038f
·
verified ·
1 Parent(s): 35dd380

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md CHANGED
@@ -1,3 +1,99 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ library_name: transformers
8
+ pipeline_tag: text-classification
9
+ tags:
10
+ - agriculture
11
+
12
+
13
+
14
+ widget:
15
+ - text: "paddy pest"
16
+ example_title: "Example- pest"
17
+ - text: "how do I apply for PM-Kisan"
18
+ example_title: "Example- scheme"
19
+ - text: "Will it rain today"
20
+ example_title: "Example- weather"
21
  ---
22
+
23
+ # Agri-flow Classification Model
24
+
25
+ This model classifies grievances into five distinct buckets:
26
+
27
+ - agricultural_scheme
28
+ - agriculture
29
+ - pest
30
+ - seed
31
+ - weather
32
+ - price
33
+ - non_agri
34
+
35
+ ## Description of the Buckets
36
+
37
+ 1. **agricultural_scheme**:
38
+ The farmer query is about schemes in Odisha
39
+
40
+ 2. **agriculture**:
41
+ General agri queries
42
+
43
+ 3. **pest**:
44
+ The farmer query is about pests
45
+
46
+ 4. **seed**:
47
+ The farmer query is about seed varieties
48
+
49
+ 5. **weather** :
50
+ The farmer query is asking about the weather for a district /place
51
+ e.g. : 'What's the weather forecast for Sundargarh?'
52
+
53
+ 6. **price** :
54
+ The farmer query is asking about the price of some crop
55
+ e.g. 'Price for paddy'
56
+
57
+ 6. **non_agri** :
58
+ The farmer query is just some salutation or unrelated to agri
59
+
60
+
61
+ ## Training Metrics
62
+
63
+ Epoch 1/1000 - Loss: 0.8210 - Accuracy: 0.7443 - F1 Score: 0.7360
64
+ Validation Accuracy: 0.9037
65
+ Validation F1 Score: 0.9022
66
+ Epoch 2/1000 - Loss: 0.2868 - Accuracy: 0.9199 - F1 Score: 0.9197
67
+ Validation Accuracy: 0.9241
68
+ Validation F1 Score: 0.9236
69
+ Epoch 3/1000 - Loss: 0.1620 - Accuracy: 0.9536 - F1 Score: 0.9534
70
+ Validation Accuracy: 0.9408
71
+ Validation F1 Score: 0.9407
72
+ Epoch 4/1000 - Loss: 0.0975 - Accuracy: 0.9698 - F1 Score: 0.9698
73
+ Validation Accuracy: 0.9457
74
+ Validation F1 Score: 0.9461
75
+ Epoch 5/1000 - Loss: 0.0722 - Accuracy: 0.9777 - F1 Score: 0.9777
76
+ Validation Accuracy: 0.9518
77
+ Validation F1 Score: 0.9520
78
+ Epoch 6/1000 - Loss: 0.0570 - Accuracy: 0.9801 - F1 Score: 0.9801
79
+ Validation Accuracy: 0.9574
80
+ Validation F1 Score: 0.9573
81
+ Epoch 7/1000 - Loss: 0.0426 - Accuracy: 0.9838 - F1 Score: 0.9838
82
+ Validation Accuracy: 0.9601
83
+ Validation F1 Score: 0.9601
84
+ Epoch 8/1000 - Loss: 0.0403 - Accuracy: 0.9850 - F1 Score: 0.9850
85
+ Validation Accuracy: 0.9646
86
+ Validation F1 Score: 0.9646
87
+ Epoch 9/1000 - Loss: 0.0340 - Accuracy: 0.9853 - F1 Score: 0.9853
88
+ Validation Accuracy: 0.9623
89
+ Validation F1 Score: 0.9624
90
+ Epoch 10/1000 - Loss: 0.0307 - Accuracy: 0.9857 - F1 Score: 0.9857
91
+ Validation Accuracy: 0.9640
92
+ Validation F1 Score: 0.9640
93
+ Epoch 11/1000 - Loss: 0.0297 - Accuracy: 0.9873 - F1 Score: 0.9873
94
+ Validation Accuracy: 0.9618
95
+ Validation F1 Score: 0.9618
96
+ Epoch 12/1000 - Loss: 0.0279 - Accuracy: 0.9867 - F1 Score: 0.9867
97
+ Validation Accuracy: 0.9607
98
+ Validation F1 Score: 0.9607
99
+