--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4268 - Accuracy: 0.9 ## Model description I have made it for audio corse Unit 4 Hands on. Check my walktrough https://outleys.site/en/development/AI/hugging-face-audio-course-unit-4-handson-guide/ ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.1998 | 0.8850 | 100 | 2.0267 | 0.34 | | 1.8078 | 1.7699 | 200 | 1.5776 | 0.51 | | 1.4427 | 2.6549 | 300 | 1.3546 | 0.57 | | 1.1903 | 3.5398 | 400 | 1.1145 | 0.63 | | 0.8872 | 4.4248 | 500 | 0.9314 | 0.74 | | 0.8191 | 5.3097 | 600 | 0.9010 | 0.73 | | 0.6717 | 6.1947 | 700 | 0.8036 | 0.75 | | 0.576 | 7.0796 | 800 | 0.9977 | 0.75 | | 0.481 | 7.9646 | 900 | 0.7552 | 0.81 | | 0.3211 | 8.8496 | 1000 | 0.6521 | 0.83 | | 0.2719 | 9.7345 | 1100 | 0.5343 | 0.86 | | 0.1922 | 10.6195 | 1200 | 0.6005 | 0.87 | | 0.1799 | 11.5044 | 1300 | 0.6158 | 0.84 | | 0.1159 | 12.3894 | 1400 | 0.5496 | 0.88 | | 0.0883 | 13.2743 | 1500 | 0.5128 | 0.88 | | 0.0536 | 14.1593 | 1600 | 0.4268 | 0.9 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1