Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 254.58 +/- 19.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fddbb0acee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddbb0acf70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddbb0ad000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddbb0ad090>", "_build": "<function ActorCriticPolicy._build at 0x7fddbb0ad120>", "forward": "<function ActorCriticPolicy.forward at 0x7fddbb0ad1b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fddbb0ad240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddbb0ad2d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fddbb0ad360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddbb0ad3f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddbb0ad480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddbb0ad510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fddbb05a240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728504695775692121, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3Cwr17rpe6/htTOrFJiTXKlXs6i+FzuQAAAAAAAIA/gNFUvjYEjT6Ltfo8cr5vvgHypr1XFB49AAAAAAAAAACAHWG9KvNHPnedTD3yelG+PR3OPDiKYD0AAAAAAAAAAHO58T3BMq0/Sn4qP3xppb6/r4c9tIKpPgAAAAAAAAAAjXybvYVL57kLXco5dTodu7EdMDvkwgA8AACAPwAAgD9zS7S9HbANP82UQ70zRGG+aspsvaOLArsAAAAAAAAAAOabFr1Id4K62GrfOn6hpDVatmU58E4CugAAgD8AAIA/GqkWPaP+lD/usXE8ateGvv0kTD2l4Ye8AAAAAAAAAADmcms9j0pWujCNQriNCJky/h2mu+YuYDcAAIA/AACAP+beTL2u6Y26q09qOu8ccDWN8F46jPKHuQAAgD8AAIA/ZhDfvAPABD/gZ+e8UWODvgG71b08jhE+AAAAAAAAAADzMoO9SK+wugp4dDlz53E0KG0/ODq+i7gAAIA/AACAP4CiXz17+pa6GbxGulDpWrYa6tm5Ui9mOQAAgD8AAIA/Jo6dvcO1drr23lG6umJLteFi7LrbtHU5AACAPwAAgD8m7qO99gAAumvDqjsTDys2sbAau/vHKjUAAIA/AACAP7Mcs70U6JG6yrp5O3SPBzn0Dtc6YEgpugAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLaBXr+o9+MAWyUTegDjAF0lEdAk93iSA6Mi3V9lChoBkdAYA3k7wKBumgHTegDaAhHQJPenfZVXFN1fZQoaAZHQGNeKR+z+m5oB03oA2gIR0CT3vfQa72+dX2UKGgGR0BkccWVNYbLaAdN6ANoCEdAk+MzCk43m3V9lChoBkdAWcqMR6F/QWgHTegDaAhHQJPko+HJtBR1fZQoaAZHQGJAVZcLSeBoB03oA2gIR0CT5oekYXO4dX2UKGgGR0Bh6vXoTwlTaAdN6ANoCEdAk+3M7U5MlHV9lChoBkdAZtbix3V092gHTegDaAhHQJQB86+36RB1fZQoaAZHQGTYSVObiIdoB03oA2gIR0CUBnP4mCyydX2UKGgGR0BmDL9If8uSaAdN6ANoCEdAlAid7KJVKnV9lChoBkdAYFYYQ8OkL2gHTegDaAhHQJQUW/k/8l51fZQoaAZHQGUC65Xlr/NoB03oA2gIR0CUFsqHGjsVdX2UKGgGR0BiZqWRigCfaAdN6ANoCEdAlBr3p4bCJ3V9lChoBkdAZiEMgEEDAGgHTegDaAhHQJQjB3C9AX51fZQoaAZHQGP814gRsdloB03oA2gIR0CUJbwFC9h7dX2UKGgGR0BjkxGx2SuAaAdN6ANoCEdAlC+JiqhlDnV9lChoBkdAZFolbeMyamgHTegDaAhHQJQvmwcHWz51fZQoaAZHQGGrvvrnkktoB03oA2gIR0CUMGD+irT6dX2UKGgGR0BkFm/N7jT8aAdN6ANoCEdAlDC2VJL/THV9lChoBkdAPsRC6Ymb9mgHS/RoCEdAlDTXww0wanV9lChoBkdAX9gHqu8sc2gHTegDaAhHQJQ1TL7oB7x1fZQoaAZHQGE32KuSwGJoB03oA2gIR0CUNrPQv6CUdX2UKGgGR0BlZaZc9nscaAdN6ANoCEdAlDivxDst03V9lChoBkdAbK52FFlTWGgHTWcDaAhHQJQ+EeyRjjJ1fZQoaAZHQGOeRcNYr8RoB03oA2gIR0CURdff4yoGdX2UKGgGR0BMCvJ7sv7FaAdNDgFoCEdAlF0ImgJ1JXV9lChoBkdAYBG5PM0P6WgHTegDaAhHQJRdebBoEjh1fZQoaAZHQF+LTg2qDK5oB03oA2gIR0CUXxuUUwi8dX2UKGgGR0Bj1PiYLLIQaAdN6ANoCEdAlGjZXlr/KnV9lChoBkdAYZj70nPVu2gHTegDaAhHQJRrajN6gNB1fZQoaAZHQE8DW0Z3s5ZoB00NAWgIR0CUbux0MgEEdX2UKGgGR0Bl2YQDmr80aAdN6ANoCEdAlHBg31jAi3V9lChoBkdAZQI8fV7QcGgHTegDaAhHQJR7Kcf/3nJ1fZQoaAZHQDjlRBNVR1poB0vqaAhHQJR70zyjHn51fZQoaAZHQGKxBDgIhQpoB03oA2gIR0CUiTWo3rD7dX2UKGgGR0BidiTyJ9ApaAdN6ANoCEdAlIlIOMERrnV9lChoBkdAZfJg8bJfY2gHTegDaAhHQJSKHQ3PzFx1fZQoaAZHQGD5YKpkwvhoB03oA2gIR0CUinf6oESvdX2UKGgGR0BjInAEdNnHaAdN6ANoCEdAlI6WMwUQCnV9lChoBkdAY1BW2gFotmgHTegDaAhHQJSPDIT4+KV1fZQoaAZHQGS1bQkX1rZoB03oA2gIR0CUkr0RODaodX2UKGgGR0BjOZ4SpR4yaAdN6ANoCEdAlJWXgHeJpHV9lChoBkdAZLXI4lyBCmgHTegDaAhHQJSZvHfdhy91fZQoaAZHQGVjfUF0PpZoB03oA2gIR0CUs1Y9xIatdX2UKGgGR0BlhaWE9MbnaAdN6ANoCEdAlLTfdZaFEnV9lChoBkfAFICP6sQumWgHTSgBaAhHQJS2sm7aqS51fZQoaAZHQG6MMiSq2jRoB03GAmgIR0CUuetihFmWdX2UKGgGR0BiCZxrBTGYaAdN6ANoCEdAlL/7TUiIL3V9lChoBkdAZUvuR9w3pGgHTegDaAhHQJTCzzSThYN1fZQoaAZHQGIufkFOfuloB03oA2gIR0CUw8ie/YapdX2UKGgGR0BjIlQyhzvJaAdN6ANoCEdAlMuFZHNHH3V9lChoBkfAI1uafBeok2gHTQ8BaAhHQJTThdY4hll1fZQoaAZHQGT0KGL1mJ5oB03oA2gIR0CU2QwQUYbbdX2UKGgGR0BiWQ0TDfm+aAdN6ANoCEdAlNkjZYgaFXV9lChoBkdAYHvBO58Sf2gHTegDaAhHQJTaMFTvRZ51fZQoaAZHQFyDp++dsi1oB03oA2gIR0CU2qfNzKcNdX2UKGgGR0BHdUCih37laAdNAQFoCEdAlN5ZgkTpPnV9lChoBkdAYUZxbSqlxmgHTegDaAhHQJTfwmv4dp91fZQoaAZHQGRjnEETxoZoB03oA2gIR0CU4Cmj0tiAdX2UKGgGR0BgSEJpnHvMaAdN6ANoCEdAlOYuAI6bOXV9lChoBkdAY49q/M4cWGgHTegDaAhHQJTqeT6i0v51fZQoaAZHQGJecm0E5hloB03oA2gIR0CVAlz9jwx4dX2UKGgGR0Bg6BMcp9ZzaAdN6ANoCEdAlQQAeii7CnV9lChoBkdAYrHCcf/3nWgHTegDaAhHQJUF3tu1ndx1fZQoaAZHQFxeTK1XvH9oB03oA2gIR0CVCc4yGi5/dX2UKGgGR0BjAdfCyhSMaAdN6ANoCEdAlRHuM2m52HV9lChoBkdAW9QdzXBgu2gHTegDaAhHQJUV93+uNgl1fZQoaAZHQFfTp+tr9EVoB03oA2gIR0CVJ8mBvrGBdX2UKGgGR0BbTH8XN1QqaAdN6ANoCEdAlSxpEx7AtXV9lChoBkdAZbfAymALA2gHTegDaAhHQJUse7ZnL7p1fZQoaAZHQGUhxHoX9BNoB03oA2gIR0CVLVl4keIVdX2UKGgGR0BlKZVU+9rXaAdN6ANoCEdAlS2491U2k3V9lChoBkdAYcsb4rSVnmgHTegDaAhHQJUwxEQXhwV1fZQoaAZHQGH00vf0mMRoB03oA2gIR0CVMeJLuhK2dX2UKGgGR0BhSXe3x4IKaAdN6ANoCEdAlTJKJ/G2kXV9lChoBkdAZ02k0Jng52gHTegDaAhHQJU4GkXUH6d1fZQoaAZHQF638tf5ULloB03oA2gIR0CVPYfukUKzdX2UKGgGR0A/sqFh5PdmaAdNKgFoCEdAlT2ucpb2UXV9lChoBkdAYomNhmXgL2gHTegDaAhHQJVFup4rz5J1fZQoaAZHQF0zkiUxEfFoB03oA2gIR0CVWHrn1WbPdX2UKGgGR0Bjs3dXT3IuaAdN6ANoCEdAlVo3erMkhXV9lChoBkdAZIlFn7Hhj2gHTegDaAhHQJVdZazNUwV1fZQoaAZHQGDpBKcurZJoB03oA2gIR0CVY4k690zTdX2UKGgGR0Bg9OTmnwXqaAdN6ANoCEdAlWfM7QswtnV9lChoBkdALRvacqe9SWgHTQQBaAhHQJVqSBClabF1fZQoaAZHQFAe/OdGy5ZoB0vHaAhHQJVxp+so2GZ1fZQoaAZHQGH+iDM/yG1oB03oA2gIR0CVfHTER8MNdX2UKGgGR0BSRgsf7rLRaAdNGAFoCEdAlYC/e54GEHV9lChoBkdAYsIaxX4j8mgHTegDaAhHQJWAw3zcynF1fZQoaAZHQGNqCFbmlqJoB03oA2gIR0CVgZ4jrzGxdX2UKGgGR0BkEp1xKg7HaAdN6ANoCEdAlYH/YJ3PiXV9lChoBkdAZiDpdrwfAGgHTegDaAhHQJWFEyN4qw11fZQoaAZHQGAZ/mknCwdoB03oA2gIR0CVhjpDu0CzdX2UKGgGR0BjlBjBl+VkaAdN6ANoCEdAlYatDtw71nV9lChoBkdANQD4xk/bCmgHTQkBaAhHQJWMjwUg0TF1fZQoaAZHQGDP74BV+7VoB03oA2gIR0CVjXCa7VawdX2UKGgGR0BiHBzaK1ohaAdN6ANoCEdAlZIDAN5MUXV9lChoBkdAZYSnGbTc7GgHTegDaAhHQJWSJO58Sf11fZQoaAZHQGQrJobn5i5oB03oA2gIR0CVmLZeiSJTdX2UKGgGR0Bjdum1pj+aaAdN6ANoCEdAlZpfGdZq23VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ae390c2cae5b0f6521ef57e5cca671d8fc86c9eb4b1e83f6f247341a03978c5
|
3 |
+
size 148084
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fddbb0acee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddbb0acf70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddbb0ad000>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddbb0ad090>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fddbb0ad120>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fddbb0ad1b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fddbb0ad240>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddbb0ad2d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fddbb0ad360>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddbb0ad3f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddbb0ad480>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddbb0ad510>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fddbb05a240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1728504695775692121,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3Cwr17rpe6/htTOrFJiTXKlXs6i+FzuQAAAAAAAIA/gNFUvjYEjT6Ltfo8cr5vvgHypr1XFB49AAAAAAAAAACAHWG9KvNHPnedTD3yelG+PR3OPDiKYD0AAAAAAAAAAHO58T3BMq0/Sn4qP3xppb6/r4c9tIKpPgAAAAAAAAAAjXybvYVL57kLXco5dTodu7EdMDvkwgA8AACAPwAAgD9zS7S9HbANP82UQ70zRGG+aspsvaOLArsAAAAAAAAAAOabFr1Id4K62GrfOn6hpDVatmU58E4CugAAgD8AAIA/GqkWPaP+lD/usXE8ateGvv0kTD2l4Ye8AAAAAAAAAADmcms9j0pWujCNQriNCJky/h2mu+YuYDcAAIA/AACAP+beTL2u6Y26q09qOu8ccDWN8F46jPKHuQAAgD8AAIA/ZhDfvAPABD/gZ+e8UWODvgG71b08jhE+AAAAAAAAAADzMoO9SK+wugp4dDlz53E0KG0/ODq+i7gAAIA/AACAP4CiXz17+pa6GbxGulDpWrYa6tm5Ui9mOQAAgD8AAIA/Jo6dvcO1drr23lG6umJLteFi7LrbtHU5AACAPwAAgD8m7qO99gAAumvDqjsTDys2sbAau/vHKjUAAIA/AACAP7Mcs70U6JG6yrp5O3SPBzn0Dtc6YEgpugAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLaBXr+o9+MAWyUTegDjAF0lEdAk93iSA6Mi3V9lChoBkdAYA3k7wKBumgHTegDaAhHQJPenfZVXFN1fZQoaAZHQGNeKR+z+m5oB03oA2gIR0CT3vfQa72+dX2UKGgGR0BkccWVNYbLaAdN6ANoCEdAk+MzCk43m3V9lChoBkdAWcqMR6F/QWgHTegDaAhHQJPko+HJtBR1fZQoaAZHQGJAVZcLSeBoB03oA2gIR0CT5oekYXO4dX2UKGgGR0Bh6vXoTwlTaAdN6ANoCEdAk+3M7U5MlHV9lChoBkdAZtbix3V092gHTegDaAhHQJQB86+36RB1fZQoaAZHQGTYSVObiIdoB03oA2gIR0CUBnP4mCyydX2UKGgGR0BmDL9If8uSaAdN6ANoCEdAlAid7KJVKnV9lChoBkdAYFYYQ8OkL2gHTegDaAhHQJQUW/k/8l51fZQoaAZHQGUC65Xlr/NoB03oA2gIR0CUFsqHGjsVdX2UKGgGR0BiZqWRigCfaAdN6ANoCEdAlBr3p4bCJ3V9lChoBkdAZiEMgEEDAGgHTegDaAhHQJQjB3C9AX51fZQoaAZHQGP814gRsdloB03oA2gIR0CUJbwFC9h7dX2UKGgGR0BjkxGx2SuAaAdN6ANoCEdAlC+JiqhlDnV9lChoBkdAZFolbeMyamgHTegDaAhHQJQvmwcHWz51fZQoaAZHQGGrvvrnkktoB03oA2gIR0CUMGD+irT6dX2UKGgGR0BkFm/N7jT8aAdN6ANoCEdAlDC2VJL/THV9lChoBkdAPsRC6Ymb9mgHS/RoCEdAlDTXww0wanV9lChoBkdAX9gHqu8sc2gHTegDaAhHQJQ1TL7oB7x1fZQoaAZHQGE32KuSwGJoB03oA2gIR0CUNrPQv6CUdX2UKGgGR0BlZaZc9nscaAdN6ANoCEdAlDivxDst03V9lChoBkdAbK52FFlTWGgHTWcDaAhHQJQ+EeyRjjJ1fZQoaAZHQGOeRcNYr8RoB03oA2gIR0CURdff4yoGdX2UKGgGR0BMCvJ7sv7FaAdNDgFoCEdAlF0ImgJ1JXV9lChoBkdAYBG5PM0P6WgHTegDaAhHQJRdebBoEjh1fZQoaAZHQF+LTg2qDK5oB03oA2gIR0CUXxuUUwi8dX2UKGgGR0Bj1PiYLLIQaAdN6ANoCEdAlGjZXlr/KnV9lChoBkdAYZj70nPVu2gHTegDaAhHQJRrajN6gNB1fZQoaAZHQE8DW0Z3s5ZoB00NAWgIR0CUbux0MgEEdX2UKGgGR0Bl2YQDmr80aAdN6ANoCEdAlHBg31jAi3V9lChoBkdAZQI8fV7QcGgHTegDaAhHQJR7Kcf/3nJ1fZQoaAZHQDjlRBNVR1poB0vqaAhHQJR70zyjHn51fZQoaAZHQGKxBDgIhQpoB03oA2gIR0CUiTWo3rD7dX2UKGgGR0BidiTyJ9ApaAdN6ANoCEdAlIlIOMERrnV9lChoBkdAZfJg8bJfY2gHTegDaAhHQJSKHQ3PzFx1fZQoaAZHQGD5YKpkwvhoB03oA2gIR0CUinf6oESvdX2UKGgGR0BjInAEdNnHaAdN6ANoCEdAlI6WMwUQCnV9lChoBkdAY1BW2gFotmgHTegDaAhHQJSPDIT4+KV1fZQoaAZHQGS1bQkX1rZoB03oA2gIR0CUkr0RODaodX2UKGgGR0BjOZ4SpR4yaAdN6ANoCEdAlJWXgHeJpHV9lChoBkdAZLXI4lyBCmgHTegDaAhHQJSZvHfdhy91fZQoaAZHQGVjfUF0PpZoB03oA2gIR0CUs1Y9xIatdX2UKGgGR0BlhaWE9MbnaAdN6ANoCEdAlLTfdZaFEnV9lChoBkfAFICP6sQumWgHTSgBaAhHQJS2sm7aqS51fZQoaAZHQG6MMiSq2jRoB03GAmgIR0CUuetihFmWdX2UKGgGR0BiCZxrBTGYaAdN6ANoCEdAlL/7TUiIL3V9lChoBkdAZUvuR9w3pGgHTegDaAhHQJTCzzSThYN1fZQoaAZHQGIufkFOfuloB03oA2gIR0CUw8ie/YapdX2UKGgGR0BjIlQyhzvJaAdN6ANoCEdAlMuFZHNHH3V9lChoBkfAI1uafBeok2gHTQ8BaAhHQJTThdY4hll1fZQoaAZHQGT0KGL1mJ5oB03oA2gIR0CU2QwQUYbbdX2UKGgGR0BiWQ0TDfm+aAdN6ANoCEdAlNkjZYgaFXV9lChoBkdAYHvBO58Sf2gHTegDaAhHQJTaMFTvRZ51fZQoaAZHQFyDp++dsi1oB03oA2gIR0CU2qfNzKcNdX2UKGgGR0BHdUCih37laAdNAQFoCEdAlN5ZgkTpPnV9lChoBkdAYUZxbSqlxmgHTegDaAhHQJTfwmv4dp91fZQoaAZHQGRjnEETxoZoB03oA2gIR0CU4Cmj0tiAdX2UKGgGR0BgSEJpnHvMaAdN6ANoCEdAlOYuAI6bOXV9lChoBkdAY49q/M4cWGgHTegDaAhHQJTqeT6i0v51fZQoaAZHQGJecm0E5hloB03oA2gIR0CVAlz9jwx4dX2UKGgGR0Bg6BMcp9ZzaAdN6ANoCEdAlQQAeii7CnV9lChoBkdAYrHCcf/3nWgHTegDaAhHQJUF3tu1ndx1fZQoaAZHQFxeTK1XvH9oB03oA2gIR0CVCc4yGi5/dX2UKGgGR0BjAdfCyhSMaAdN6ANoCEdAlRHuM2m52HV9lChoBkdAW9QdzXBgu2gHTegDaAhHQJUV93+uNgl1fZQoaAZHQFfTp+tr9EVoB03oA2gIR0CVJ8mBvrGBdX2UKGgGR0BbTH8XN1QqaAdN6ANoCEdAlSxpEx7AtXV9lChoBkdAZbfAymALA2gHTegDaAhHQJUse7ZnL7p1fZQoaAZHQGUhxHoX9BNoB03oA2gIR0CVLVl4keIVdX2UKGgGR0BlKZVU+9rXaAdN6ANoCEdAlS2491U2k3V9lChoBkdAYcsb4rSVnmgHTegDaAhHQJUwxEQXhwV1fZQoaAZHQGH00vf0mMRoB03oA2gIR0CVMeJLuhK2dX2UKGgGR0BhSXe3x4IKaAdN6ANoCEdAlTJKJ/G2kXV9lChoBkdAZ02k0Jng52gHTegDaAhHQJU4GkXUH6d1fZQoaAZHQF638tf5ULloB03oA2gIR0CVPYfukUKzdX2UKGgGR0A/sqFh5PdmaAdNKgFoCEdAlT2ucpb2UXV9lChoBkdAYomNhmXgL2gHTegDaAhHQJVFup4rz5J1fZQoaAZHQF0zkiUxEfFoB03oA2gIR0CVWHrn1WbPdX2UKGgGR0Bjs3dXT3IuaAdN6ANoCEdAlVo3erMkhXV9lChoBkdAZIlFn7Hhj2gHTegDaAhHQJVdZazNUwV1fZQoaAZHQGDpBKcurZJoB03oA2gIR0CVY4k690zTdX2UKGgGR0Bg9OTmnwXqaAdN6ANoCEdAlWfM7QswtnV9lChoBkdALRvacqe9SWgHTQQBaAhHQJVqSBClabF1fZQoaAZHQFAe/OdGy5ZoB0vHaAhHQJVxp+so2GZ1fZQoaAZHQGH+iDM/yG1oB03oA2gIR0CVfHTER8MNdX2UKGgGR0BSRgsf7rLRaAdNGAFoCEdAlYC/e54GEHV9lChoBkdAYsIaxX4j8mgHTegDaAhHQJWAw3zcynF1fZQoaAZHQGNqCFbmlqJoB03oA2gIR0CVgZ4jrzGxdX2UKGgGR0BkEp1xKg7HaAdN6ANoCEdAlYH/YJ3PiXV9lChoBkdAZiDpdrwfAGgHTegDaAhHQJWFEyN4qw11fZQoaAZHQGAZ/mknCwdoB03oA2gIR0CVhjpDu0CzdX2UKGgGR0BjlBjBl+VkaAdN6ANoCEdAlYatDtw71nV9lChoBkdANQD4xk/bCmgHTQkBaAhHQJWMjwUg0TF1fZQoaAZHQGDP74BV+7VoB03oA2gIR0CVjXCa7VawdX2UKGgGR0BiHBzaK1ohaAdN6ANoCEdAlZIDAN5MUXV9lChoBkdAZYSnGbTc7GgHTegDaAhHQJWSJO58Sf11fZQoaAZHQGQrJobn5i5oB03oA2gIR0CVmLZeiSJTdX2UKGgGR0Bjdum1pj+aaAdN6ANoCEdAlZpfGdZq23VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33a81b49070821c23e2cf674f8febb2eedeb7f97c99a06fcd2a24904a45958b2
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0f1b140df7ae7682508103cfbe51637455815ef8ee2452876b201086bcd29b8
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (186 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 254.57719683146289, "std_reward": 19.055312298122168, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-09T20:35:43.708160"}
|