|
import torch |
|
from typing import Any, Union, List, Dict |
|
import re |
|
|
|
from models.vss import VSS |
|
from models.model import ModelForSTaRKQA |
|
from stark_qa.tools.api import get_llm_output |
|
|
|
|
|
def find_floating_number(text: str) -> List[float]: |
|
""" |
|
Extract floating point numbers from the given text. |
|
|
|
Args: |
|
text (str): Input text from which to extract numbers. |
|
|
|
Returns: |
|
List[float]: List of extracted floating point numbers. |
|
""" |
|
pattern = r'0\.\d+|1\.0' |
|
matches = re.findall(pattern, text) |
|
return [round(float(match), 4) for match in matches if float(match) <= 1.1] |
|
|
|
|
|
class LLMReranker(ModelForSTaRKQA): |
|
|
|
def __init__(self, |
|
kb, |
|
llm_model: str, |
|
emb_model: str, |
|
query_emb_dir: str, |
|
candidates_emb_dir: str, |
|
sim_weight: float = 0.1, |
|
max_cnt: int = 3, |
|
max_k: int = 100, |
|
device: str = 'cuda'): |
|
""" |
|
Initializes the LLMReranker model. |
|
|
|
Args: |
|
kb (SemiStruct): Knowledge base. |
|
llm_model (str): Name of the LLM model. |
|
emb_model (str): Embedding model name. |
|
query_emb_dir (str): Directory to query embeddings. |
|
candidates_emb_dir (str): Directory to candidate embeddings. |
|
sim_weight (float): Weight for similarity score. |
|
max_cnt (int): Maximum count for retrying LLM response. |
|
max_k (int): Maximum number of top candidates to consider. |
|
""" |
|
super(LLMReranker, self).__init__(kb) |
|
self.max_k = max_k |
|
self.emb_model = emb_model |
|
self.llm_model = llm_model |
|
self.sim_weight = sim_weight |
|
self.max_cnt = max_cnt |
|
|
|
self.query_emb_dir = query_emb_dir |
|
self.candidates_emb_dir = candidates_emb_dir |
|
self.parent_vss = VSS(kb, query_emb_dir, candidates_emb_dir, |
|
emb_model=emb_model, device=device) |
|
|
|
def forward(self, |
|
query: Union[str, List[str]], |
|
query_id: Union[int, List[int]] = None, |
|
**kwargs: Any) -> Dict[int, float]: |
|
""" |
|
Forward pass to compute predictions for the given query using LLM reranking. |
|
|
|
Args: |
|
query (Union[str, list]): Query string or a list of query strings. |
|
query_id (Union[int, list, None]): Query index (optional). |
|
|
|
Returns: |
|
pred_dict (dict): A dictionary of predicted scores or answer ids. |
|
""" |
|
initial_score_dict = self.parent_vss(query, query_id) |
|
node_ids = list(initial_score_dict.keys()) |
|
node_scores = list(initial_score_dict.values()) |
|
|
|
|
|
top_k_idx = torch.topk( |
|
torch.FloatTensor(node_scores), |
|
min(self.max_k, len(node_scores)), |
|
dim=-1 |
|
).indices.view(-1).tolist() |
|
top_k_node_ids = [node_ids[i] for i in top_k_idx] |
|
cand_len = len(top_k_node_ids) |
|
|
|
pred_dict = {} |
|
for idx, node_id in enumerate(top_k_node_ids): |
|
node_type = self.skb.get_node_type_by_id(node_id) |
|
prompt = ( |
|
f'You are a helpful assistant that examines if a {node_type} ' |
|
f'satisfies the requirements in a given query and assign a score from 0.0 to 1.0. ' |
|
f'If the {node_type} does not satisfy any requirement in the query, the score should be 0.0. ' |
|
f'If there exists explicit and strong evidence supporting that {node_type} ' |
|
f'satisfies all aspects mentioned by the query, the score should be 1.0. If partial evidence or weak ' |
|
f'evidence exists, the score should be between 0.0 and 1.0.\n' |
|
f'Here is the query:\n\"{query}\"\n' |
|
f'Here is the information about the {node_type}:\n' + |
|
self.skb.get_doc_info(node_id, add_rel=True) + '\n\n' + |
|
f'Please score the {node_type} based on how well it satisfies the query. ' |
|
f'ONLY output the floating point score WITHOUT anything else. ' |
|
f'Output: The numeric score of this {node_type} is: ' |
|
) |
|
|
|
success = False |
|
for _ in range(self.max_cnt): |
|
try: |
|
answer = get_llm_output( |
|
prompt, |
|
self.llm_model, |
|
max_tokens=5 |
|
) |
|
answer = find_floating_number(answer) |
|
if len(answer) == 1: |
|
answer = answer[0] |
|
success = True |
|
break |
|
except Exception as e: |
|
print(f'Error: {e}, retrying...') |
|
|
|
if success: |
|
llm_score = float(answer) |
|
sim_score = (cand_len - idx) / cand_len |
|
score = llm_score + self.sim_weight * sim_score |
|
pred_dict[node_id] = score |
|
else: |
|
return initial_score_dict |
|
return pred_dict |
|
|