File size: 14,639 Bytes
7bf4b88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import os
import os.path as osp
import pickle
import torch
import gdown
import zipfile
import json
import pandas as pd
from huggingface_hub import hf_hub_download
from tdc.resource import PrimeKG
from typing import Union
from stark_qa.skb.knowledge_base import SKB
from stark_qa.tools.process_text import compact_text, clean_dict
from stark_qa.tools.node import Node, register_node
from stark_qa.tools.io import save_files, load_files
from stark_qa.tools.download_hf import download_hf_file
DATASET = {
"repo": "snap-stanford/stark",
"raw": "skb/prime/raw.zip",
"processed": "skb/prime/processed.zip",
}
class PrimeSKB(SKB):
NODE_TYPES = [
'disease', 'gene/protein', 'molecular_function', 'drug', 'pathway',
'anatomy', 'effect/phenotype', 'biological_process', 'cellular_component', 'exposure'
]
RELATION_TYPES = [
'ppi', 'carrier', 'enzyme', 'target', 'transporter', 'contraindication',
'indication', 'off-label use', 'synergistic interaction', 'associated with',
'parent-child', 'phenotype absent', 'phenotype present', 'side effect',
'interacts with', 'linked to', 'expression present', 'expression absent'
]
META_DATA = ['id', 'type', 'name', 'source', 'details']
candidate_types = NODE_TYPES
def __init__(self,
root: Union[str, None] = None,
download_processed: bool = True,
**kwargs):
"""
Initialize the PrimeSKB class.
Args:
root (Union[str, None]): Root directory to store the dataset. If None, default HF cache paths will be used.
download_processed (bool): Whether to download the processed data.
"""
self.root = root
if download_processed:
if (self.root is None) or (self.root is not None and not osp.exists(osp.join(root, "processed", 'node_info.pkl'))):
processed_path = hf_hub_download(DATASET["repo"], DATASET["processed"], repo_type="dataset")
if self.root is None:
self.root = osp.dirname(processed_path)
if not osp.exists(osp.join(self.root, "processed", 'node_info.pkl')):
with zipfile.ZipFile(processed_path, 'r') as zip_ref:
zip_ref.extractall(self.root)
print(f"Extracting downloaded processed data to {self.root}")
self.raw_data_dir = osp.join(self.root, "raw")
self.processed_data_dir = osp.join(osp.join(self.root, "processed"))
self.kg_path = osp.join(self.raw_data_dir, "kg.csv")
self.meta_path = osp.join(self.raw_data_dir, "primekg_metadata_extended.pkl")
if osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
processed_data = load_files(self.processed_data_dir)
print(f'Loading from {self.processed_data_dir}!')
else:
processed_data = self._process_raw()
super(PrimeSKB, self).__init__(**processed_data, **kwargs)
self.node_info = clean_dict(self.node_info)
self.node_attr_dict = {}
for node_type in self.node_type_lst():
attributes = []
for idx in self.get_node_ids_by_type(node_type):
attributes.extend(self[idx].__attr__())
self.node_attr_dict[node_type] = list(set(attributes))
def _download_raw_data(self):
"""
Download the raw data if it does not already exist.
"""
zip_path = osp.join(self.root, 'raw.zip')
if not osp.exists(self.kg_path):
download_hf_file(
DATASET["repo"],
DATASET["raw"],
repo_type="dataset",
save_as_file=zip_path
)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(self.root)
os.remove(zip_path)
def _process_raw(self):
"""
Process the raw data to construct the knowledge base.
Returns:
dict: Processed data.
"""
self._download_raw_data()
print('Loading data... It might take a while')
with open(self.kg_path, 'r') as rf:
self.raw_data = pd.read_csv(rf)
# Construct basic information for each node and edge
node_info = {}
node_type_dict = {}
node_types = {}
cnt_dict = {}
ntypes = self.NODE_TYPES
for idx, node_t in enumerate(ntypes):
node_type_dict[idx] = node_t
cnt_dict[node_t] = [0, 0, 0.0]
for idx, node_id, node_type, node_name, source in zip(
self.raw_data['x_index'], self.raw_data['x_id'],
self.raw_data['x_type'], self.raw_data['x_name'],
self.raw_data['x_source']):
if idx in node_info.keys():
continue
node_info[idx] = {'id': node_id, 'type': node_type, 'name': node_name, 'source': source}
node_types[idx] = ntypes.index(node_type)
cnt_dict[node_type][0] += 1
for item in zip(self.raw_data['y_index'], self.raw_data['y_id'], self.raw_data['y_type'],
self.raw_data['y_name'], self.raw_data['y_source']):
idx, node_id, node_type, node_name, source = item
if idx in node_info.keys():
continue
node_info[idx] = {'id': node_id, 'type': node_type, 'name': node_name, 'source': source}
node_types[idx] = ntypes.index(node_type)
cnt_dict[node_type][0] += 1
assert len(node_info) == max(node_types.keys()) + 1
node_types = [node_types[idx] for idx in range(len(node_types))]
edge_index = [[], []]
edge_types = []
edge_type_dict = {}
rel_types = self.RELATION_TYPES
for idx, edge_t in enumerate(rel_types):
edge_type_dict[idx] = edge_t
for head_id, tail_id, relation_type in zip(
self.raw_data['x_index'], self.raw_data['y_index'], self.raw_data['display_relation']):
edge_index[0].append(head_id)
edge_index[1].append(tail_id)
edge_types.append(rel_types.index(relation_type))
if relation_type not in edge_type_dict.values():
print('Unexpected new relation type', relation_type)
edge_type_dict[len(edge_type_dict)] = relation_type
edge_index = torch.LongTensor(edge_index)
edge_types = torch.LongTensor(edge_types)
node_types = torch.LongTensor(node_types)
# Construct meta information for nodes
with open(self.meta_path, 'rb') as f:
meta = pickle.load(f)
pathway_dict = meta['pathway']
pathway = {}
for v in pathway_dict.values():
try:
pathway[v['name'][0]] = v
except:
pass
print('Constructing meta data for nodes...')
print('Total number of nodes:', len(node_info))
for idx in node_info.keys():
tp = node_info[idx]['type']
if tp in ['disease', 'drug', 'exposure', 'anatomy', 'effect/phenotype']:
continue
elif tp in ['biological_process', 'molecular_function', 'cellular_component']:
node_meta = meta[tp].get(node_info[idx]['id'], 'No meta data')
elif tp == 'gene/protein':
node_meta = meta[tp].get(node_info[idx]['name'], 'No meta data')
elif tp == 'pathway':
node_meta = pathway.get(node_info[idx]['name'], 'No meta data')
else:
print('Unexpected type:', tp)
raise NotImplementedError
if isinstance(node_meta, dict):
filtered_node_meta = {k: v for k, v in node_meta.items() if v is not None and v != ['']}
if filtered_node_meta == {}:
continue
else:
node_info[idx]['details'] = filtered_node_meta
cnt_dict[tp][1] += 1
elif node_meta == 'No meta data':
continue
elif isinstance(node_meta, str):
try:
assert node_meta == node_info[idx]['name']
except:
print('Problematic:', node_meta, node_info[idx]['name'])
else:
raise NotImplementedError
data = PrimeKG(path=self.raw_data_dir)
drug_feature = data.get_features(feature_type='drug')
disease_feature = data.get_features(feature_type='disease')
drug_set = set()
for i in range(len(drug_feature)):
id = drug_feature.iloc[i]['node_index']
if id in drug_set:
continue
drug_set.add(id)
cnt_dict['drug'][1] += 1
details_dict = drug_feature.iloc[i].to_dict()
del details_dict['node_index']
node_info[id]['details'] = details_dict
disease_set = set()
for i in range(len(disease_feature)):
id = disease_feature.iloc[i]['node_index']
if id in disease_set:
continue
disease_set.add(id)
cnt_dict['disease'][1] += 1
details_dict = disease_feature.iloc[i].to_dict()
del details_dict['node_index']
node_info[id]['details'] = details_dict
for k, trip in cnt_dict.items():
cnt_dict[k] = (trip[0], trip[1], trip[1] * 1.0 / trip[0])
with open(osp.join(self.root, 'stats.json'), 'w') as df:
print('Saving stats to', osp.join(self.root, 'stats.json'))
json.dump(cnt_dict, df, indent=4)
files = {
'node_info': node_info,
'edge_index': edge_index,
'edge_types': edge_types,
'edge_type_dict': edge_type_dict,
'node_types': node_types,
'node_type_dict': node_type_dict
}
print(f'Saving to {self.processed_data_dir}...')
save_files(save_path=self.processed_data_dir, **files)
return files
def __getitem__(self, idx):
"""
Get the node at the specified index.
Args:
idx (int): Index of the node.
Returns:
Node: The node at the specified index.
"""
idx = int(idx)
node_info = self.node_info[idx]
node = Node()
register_node(node, node_info)
return node
def get_doc_info(self, idx, add_rel=False, compact=False, n_rel=-1) -> str:
"""
Get document information for the specified node.
Args:
idx (int): Index of the node.
add_rel (bool): Whether to add relationship information.
compact (bool): Whether to compact the text.
n_rel (int): Number of relationships to add.
Returns:
str: Document information.
"""
node = self[idx]
node_info = self.node_info[idx]
doc = f'- name: {node.name}\n'
doc += f'- type: {node.type}\n'
doc += f'- source: {node.source}\n'
gene_protein_text_explain = {
'name': 'gene name',
'type_of_gene': 'gene types',
'alias': 'other gene names',
'other_names': 'extended other gene names',
'genomic_pos': 'genomic position',
'generif': 'PubMed text',
'interpro': 'protein family and classification information',
'summary': 'protein summary text'
}
feature_text = f'- details:\n'
feature_cnt = 0
if 'details' in node_info.keys():
for key, value in node_info['details'].items():
if str(value) in ['', 'nan'] or key.startswith('_') or '_id' in key:
continue
if node.type == 'gene/protein' and key in gene_protein_text_explain.keys():
if 'interpro' in key:
if isinstance(value, dict):
value = [value]
value = [v['desc'] for v in value]
if 'generif' in key:
value = '; '.join([v['text'] for v in value])
value = ' '.join(value.split(' ')[:50000])
if 'genomic_pos' in key:
if isinstance(value, list):
value = value[0]
feature_text += f' - {key} ({gene_protein_text_explain[key]}): {value}\n'
feature_cnt += 1
else:
feature_text += f' - {key}: {value}\n'
feature_cnt += 1
if feature_cnt == 0:
feature_text = ''
doc += feature_text
if add_rel:
doc += self.get_rel_info(idx, n_rel=n_rel)
if compact:
doc = compact_text(doc)
return doc
def get_rel_info(self,
idx: int,
rel_types: Union[list, None] = None,
n_rel: int = -1) -> str:
"""
Get relation information for the specified node.
Args:
idx (int): Index of the node.
rel_types (Union[list, None]): List of relation types or None if all relation types are included.
n_rel (int): Number of relations. Default is -1 if all relations are included.
Returns:
doc (str): Relation information.
"""
doc = ''
rel_types = self.rel_type_lst() if rel_types is None else rel_types
for edge_t in rel_types:
node_ids = torch.LongTensor(self.get_neighbor_nodes(idx, edge_t))
if len(node_ids) == 0:
continue
doc += f"\n {edge_t.replace(' ', '_')}: " + "{"
node_types = self.node_types[node_ids]
for node_type in set(node_types.tolist()):
neighbors = []
doc += f'{self.node_type_dict[node_type]}: '
node_ids_t = node_ids[node_types == node_type]
if n_rel > 0:
node_ids_t = node_ids_t[torch.randperm(len(node_ids_t))[:n_rel]]
for i in node_ids_t:
neighbors.append(f'{self[i].name}')
neighbors = '(' + ', '.join(neighbors) + '),'
doc += neighbors
doc += '}'
if len(doc):
doc = '- relations:' + doc
return doc
|