File size: 29,695 Bytes
7bf4b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import json
import os
import os.path as osp
import zipfile

import numpy as np
import pandas as pd
import torch
from huggingface_hub import hf_hub_download
from langdetect import detect
from ogb.nodeproppred import NodePropPredDataset
from ogb.utils.url import download_url, extract_zip
from tqdm import tqdm
from typing import Union

from stark_qa.skb.knowledge_base import SKB
from stark_qa.tools.download_hf import download_hf_file, download_hf_folder
from stark_qa.tools.io import load_files, save_files
from stark_qa.tools.process_text import compact_text



DATASET = {
    "repo": "snap-stanford/stark",
    'metadata': 'skb/mag/schema',
    'raw': 'skb/mag/idx_title_abs.zip',
    'processed': 'skb/mag/processed.zip'
}

RAW_DATA = {
    'ogbn_papers100M': 'https://snap.stanford.edu/ogb/data/misc/ogbn_papers100M/paperinfo.zip',
    'mag_mapping': 'https://zenodo.org/records/2628216/files'
}

class MagSKB(SKB):
    
    test_columns = ['title', 'abstract', 'text']
    candidate_types = ['paper']

    node_type_dict = {0: 'author', 1: 'institution', 2: 'field_of_study', 3: 'paper'}
    edge_type_dict = {
        0: 'author___affiliated_with___institution',
        1: 'paper___cites___paper', 
        2: 'paper___has_topic___field_of_study',
        3: 'author___writes___paper'
    }
    node_attr_dict = {
        'paper': ['title', 'abstract', 'publication date', 'venue'],
        'author': ['name'],
        'institution': ['name'],
        'field_of_study': ['name']
    }
    
    def __init__(self, 
                 root: Union[str, None] = None, 
                 download_processed: bool = True,
                 **kwargs):
        """
        Initialize the MagSKB class.

        Args:
            root (Union[str, None]): Root directory to store the dataset. If None, default HF cache paths will be used.
            download_processed (bool): Whether to download the processed data.
        """
        self.root = root

        if download_processed:
            if (self.root is None) or (self.root is not None and not osp.exists(osp.join(self.root, 'processed', 'node_info.pkl'))):
                processed_path = hf_hub_download(
                    DATASET["repo"], DATASET["processed"], repo_type="dataset"
                )
                if self.root is None:
                    self.root = osp.dirname(processed_path)
                if not osp.exists(osp.join(self.root, 'processed', 'node_info.pkl')):
                    with zipfile.ZipFile(processed_path, "r") as zip_ref:
                        zip_ref.extractall(self.root)
                    print(f"Extracting downloaded processed data to {self.root}")


        self.raw_data_dir = osp.join(self.root, 'raw')
        self.processed_data_dir = osp.join(self.root, 'processed')
        self.graph_data_root = osp.join(self.raw_data_dir, 'ogbn_mag')
        self.text_root = osp.join(self.raw_data_dir, 'ogbn_papers100M')

        # existing dirs/files
        self.schema_dir = osp.join(self.root, 'schema')
        if not osp.exists(self.schema_dir):
            download_hf_folder(
                DATASET["repo"], DATASET["metadata"],
                repo_type="dataset", save_as_folder=self.schema_dir
            )

        self.mag_mapping_dir = osp.join(self.graph_data_root, 'mag_mapping')
        self.ogbn_mag_mapping_dir = osp.join(self.graph_data_root, 'mapping')
        self.title_path = osp.join(self.text_root, 'paperinfo/idx_title.tsv')
        self.abstract_path = osp.join(self.text_root, 'paperinfo/idx_abs.tsv')

        # new files
        self.mag_metadata_cache_dir = osp.join(self.processed_data_dir, 'mag_cache')
        self.paper100M_text_cache_dir = osp.join(self.processed_data_dir, 'paper100M_cache')
        self.merged_filtered_path = osp.join(self.paper100M_text_cache_dir, 'idx_title_abs.tsv')
        os.makedirs(self.mag_metadata_cache_dir, exist_ok=True)
        os.makedirs(self.paper100M_text_cache_dir, exist_ok=True)


        if osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
            print(f'Loading from {self.processed_data_dir}!')
            processed_data = load_files(self.processed_data_dir)
        else:
            print('Start processing raw data...')
            processed_data = self._process_raw()
        processed_data.update({
            'node_type_dict': self.node_type_dict, 
            'edge_type_dict': self.edge_type_dict
        })
        super(MagSKB, self).__init__(**processed_data, **kwargs)

    def load_edge(self, edge_type: str) -> tuple:
        """
        Load edge data for the specified edge type.

        Args:
            edge_type (str): Type of edge to load.

        Returns:
            tuple: A tuple containing edge tensor and edge numbers.
        """
        edge_dir = osp.join(self.graph_data_root, f"raw/relations/{edge_type}/edge.csv.gz")
        edge_type_dir = osp.join(self.graph_data_root, f"raw/relations/{edge_type}/edge_reltype.csv.gz")
        num_dir = osp.join(self.graph_data_root, f"raw/relations/{edge_type}/num-edge-list.csv.gz")
        edge = pd.read_csv(edge_dir, names=['src', 'dst'])
        
        edge_t = pd.read_csv(edge_type_dir, names=['type'])
        edge_n = pd.read_csv(num_dir, names=['num'])
        edge_num = edge_n['num'].tolist()

        edge = [edge['src'].tolist(), edge['dst'].tolist(), edge_t['type'].tolist()]
        edge = torch.LongTensor(edge)

        return edge, edge_num
    
    def load_meta_data(self):
        """
        Load metadata for the MAG dataset.

        Returns:
            tuple: DataFrames for authors, fields of study, institutions, and papers.
        """
        mag_csv = {}
        if osp.exists(osp.join(self.mag_metadata_cache_dir, 'paper_data.csv')):
            print('Start loading MAG data from cache...')
            for t in ['author', 'institution', 'field_of_study', 'paper']:
                mag_csv[t] = pd.read_csv(osp.join(self.mag_metadata_cache_dir, f'{t}_data.csv'))
            author_data, paper_data = mag_csv['author'], mag_csv['paper']
            field_of_study_data = mag_csv['field_of_study']
            institution_data = mag_csv['institution']
            print('Done!')
        else:
            print('Start loading MAG data, it might take a while...')
            full_attr_path = osp.join(self.schema_dir, 'mag.json')
            reduced_attr_path = osp.join(self.schema_dir, 'reduced_mag.json')

            full_attr = json.load(open(full_attr_path, 'r'))
            reduced_attr = json.load(open(reduced_attr_path, 'r'))

            loaded_csv = {}
            for key in reduced_attr.keys():
                column_nums = [full_attr[key].index(i) for i in reduced_attr[key]]
                file = osp.join(self.mag_mapping_dir, key + '.txt.gz')
                if not osp.exists(file):
                    try:
                        download_url(f'{RAW_DATA["mag_mapping"]}/{key}.txt.gz', self.mag_mapping_dir)
                    except Exception as error:
                        print(f'Download failed or {key} data not found, please download from {RAW_DATA["mag_mapping"]} to {file}')
                        raise error
                loaded_csv[key] = pd.read_csv(file, header=None, sep='\t', usecols=column_nums)
                loaded_csv[key].columns = reduced_attr[key]

            print('Processing and merging meta data...')
            author_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "author_entidx2name.csv.gz"), names=['id', 'AuthorId'], skiprows=[0])
            field_of_study_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "field_of_study_entidx2name.csv.gz"), names=['id', 'FieldOfStudyId'], skiprows=[0])
            institution_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "institution_entidx2name.csv.gz"), names=['id', 'AffiliationId'], skiprows=[0])
            paper_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "paper_entidx2name.csv.gz"), names=['id', 'PaperId'], skiprows=[0])

            loaded_csv['Papers'].rename(columns={'JournalId ': 'JournalId', 'Rank': 'PaperRank', 'CitationCount': 'PaperCitationCount'}, inplace=True)
            loaded_csv['Journals'].rename(columns={'DisplayName': 'JournalDisplayName', 'Rank': 'JournalRank', 'CitationCount': 'JournalCitationCount', 'PaperCount': 'JournalPaperCount'}, inplace=True)
            loaded_csv['ConferenceSeries'].rename(columns={'DisplayName': 'ConferenceSeriesDisplayName', 'Rank': 'ConferenceSeriesRank', 'CitationCount': 'ConferenceSeriesCitationCount', 'PaperCount': 'ConferenceSeriesPaperCount'}, inplace=True)
            loaded_csv['ConferenceInstances'].rename(columns={'DisplayName': 'ConferenceInstancesDisplayName', 'CitationCount': 'ConferenceInstanceCitationCount', 'PaperCount': 'ConferenceInstancesPaperCount'}, inplace=True)

            author_data = author_data.merge(loaded_csv['Authors'], on='AuthorId', how='left')
            field_of_study_data = field_of_study_data.merge(loaded_csv['FieldsOfStudy'], on='FieldOfStudyId', how='left')
            institution_data = institution_data.merge(loaded_csv['Affiliations'], on='AffiliationId', how='left')
            paper_data = paper_data.merge(loaded_csv['Papers'], on='PaperId', how='left')

            paper_data['JournalId'] = paper_data['JournalId'].apply(lambda x: float(x)).apply(lambda x: -1 if np.isnan(x) else int(x))
            paper_data = paper_data.merge(loaded_csv['Journals'], on='JournalId', how='left')

            paper_data = paper_data.merge(loaded_csv['ConferenceSeries'], on='ConferenceSeriesId', how='left')

            paper_data['ConferenceInstanceId'] = paper_data['ConferenceInstanceId'].apply(lambda x: float(x)).apply(lambda x: -1 if np.isnan(x) else int(x))
            paper_data = paper_data.merge(loaded_csv['ConferenceInstances'], on='ConferenceInstanceId', how='left')

            for csv_data in [author_data, field_of_study_data, institution_data, paper_data]:
                csv_data.columns = csv_data.columns.str.strip()
                for col in csv_data.columns:
                    csv_data[col] = csv_data[col].apply(lambda x: -1 if isinstance(x, float) and np.isnan(x) else x)
                    if 'rank' in col.lower() or 'count' in col.lower() or 'level' in col.lower() or 'year' in col.lower() or col.lower().endswith('id'):
                        csv_data[col] = csv_data[col].apply(lambda x: int(x) if isinstance(x, float) else x)
            
            mag_csv = {
                'author': author_data, 
                'institution': institution_data, 
                'field_of_study': field_of_study_data, 
                'paper': paper_data
            }
            
            for t in ['author', 'institution', 'field_of_study', 'paper']:
                mag_csv[t].to_csv(osp.join(self.mag_metadata_cache_dir, f'{t}_data.csv'), index=False)
            author_data, paper_data = mag_csv['author'], mag_csv['paper']
            field_of_study_data = mag_csv['field_of_study']
            institution_data = mag_csv['institution']

        # create init_id to mag_id mapping
        author_data['type'] = 'author'
        author_data.rename(columns={'id': 'id', 'AuthorId': 'mag_id'}, inplace=True)

        institution_data['type'] = 'institution'
        institution_data.rename(columns={'id': 'id', 'AffiliationId': 'mag_id'}, inplace=True)

        field_of_study_data['type'] = 'field_of_study'
        field_of_study_data.rename(columns={'id': 'id', 'FieldOfStudyId': 'mag_id'}, inplace=True)

        paper_data['type'] = 'paper'
        paper_data.rename(columns={'id': 'id', 'PaperId': 'mag_id'}, inplace=True)
        return author_data, field_of_study_data, institution_data, paper_data

    def load_english_paper_text(self, 
                                mag_ids: list,
                                download_cache: bool = True) -> pd.DataFrame:
        """
        Load English text data for the papers.

        Args:
            mag_ids (list): List of MAG IDs for the papers.
            download_cache (bool): Whether to download cached data.

        Returns:
            DataFrame: DataFrame containing English titles and abstracts.
        """
        def is_english(text):
            try:
                return detect(text) == 'en'
            except:
                return False

        if not osp.exists(self.merged_filtered_path):
            if download_cache:
                merged_filtered_zip_path = self.merged_filtered_path.replace('tsv', 'zip')
                download_hf_file(
                    DATASET["repo"], DATASET["raw"],
                    repo_type="dataset", save_as_file=merged_filtered_zip_path
                )
                extract_zip(merged_filtered_zip_path, osp.dirname(self.merged_filtered_path))
            else:
                if not osp.exists(self.title_path):  
                    raw_text_path = download_url(RAW_DATA['ogbn_papers100M'], self.text_root)
                    extract_zip(raw_text_path, self.text_root)
                print('Start reading title...')
                title = pd.read_csv(self.title_path, sep='\t', header=None)
                title.columns = ["mag_id", "title"]
                print('Filtering titles in English...')

                # filter the titles that are in mag_ids
                title = title[title['mag_id'].apply(lambda x: x in mag_ids)]
                title_en = title[title['title'].apply(is_english)]

                print('Start reading abstract...')
                abstract = pd.read_csv(self.abstract_path, sep='\t', header=None)
                abstract.columns = ["mag_id", "abstract"]
                print('Filtering abstracts in English...')

                abstract = abstract[abstract['mag_id'].apply(lambda x: x in mag_ids)]
                abstract_en = abstract[abstract['abstract'].apply(is_english)]

                print('Start merging titles and abstracts...')
                title_abs_en = pd.merge(title, abstract, how="outer", on="mag_id", sort=True)
                title_abs_en.to_csv(self.merged_filtered_path, sep="\t", header=True, index=False)
                
        print('Loading merged and filtered titles and abstracts (English)...')
        title_abs_en = pd.read_csv(self.merged_filtered_path, sep='\t')
        title_abs_en.columns = ['mag_id', 'title', 'abstract']
        print('Done!')

        return title_abs_en

    def get_map(self, df):
        """
        Create mappings between MAG IDs and internal IDs.

        Args:
            df (DataFrame): DataFrame containing MAG IDs.

        Returns:
            tuple: Mappings from MAG IDs to internal IDs and vice versa.
        """
        mag2id, id2mag = {}, {}
        for idx in range(len(df)):
            mag2id[df['mag_id'][idx]] = idx
            id2mag[idx] = df['mag_id'][idx]
        return mag2id, id2mag
    
    def get_doc_info(self, 
                     idx : int,
                     compact: bool = False,
                     add_rel: bool = False,
                     n_rel: int = -1) -> str:
        """
        Get document information for the specified node.

        Args:
            idx (int): Index of the node.
            compact (bool): Whether to compact the text.
            add_rel (bool): Whether to add relation information.
            n_rel (int): Number of relations to add. Default is -1 if all relations are included.

        Returns:
            str: Document information.
        """
        node = self[idx]
        if node.type == 'author':
            doc = f'- author name: {node.DisplayName}\n'
            if node.PaperCount != -1:
                doc += f'- author paper count: {node.PaperCount}\n'
            if node.CitationCount != -1:
                doc += f'- author citation count: {node.CitationCount}\n'
            doc = doc.replace('-1', 'Unknown')

        elif node.type == 'paper':
            doc = f' - paper title: {node.title}\n'
            doc += ' - abstract: ' + node.abstract.replace('\r', '').rstrip('\n') + '\n'
            if str(node.Date) != '-1':
                doc += f' - publication date: {node.Date}\n'
            if str(node.OriginalVenue) != '-1':
                doc += f' - venue: {node.OriginalVenue}\n'
            elif str(node.JournalDisplayName) != '-1':
                doc += f' - journal: {node.JournalDisplayName}\n'
            elif str(node.ConferenceSeriesDisplayName) != '-1':
                doc += f' - conference: {node.ConferenceSeriesDisplayName}\n'
            elif str(node.ConferenceInstancesDisplayName) != '-1':
                doc += f' - conference: {node.ConferenceInstancesDisplayName}\n'

        elif node.type == 'field_of_study':
            doc = f' - field of study: {node.DisplayName}\n' 
            if node.PaperCount != -1:
                doc += f'- field paper count: {node.PaperCount}\n'
            if node.CitationCount != -1:
                doc += f'- field citation count: {node.CitationCount}\n'
            doc = doc.replace('-1', 'Unknown')
            
        elif node.type == 'institution':
            doc = f' - institution: {node.DisplayName}\n' 
            if node.PaperCount != -1:
                doc += f'- institution paper count: {node.PaperCount}\n'
            if node.CitationCount != -1:
                doc += f'- institution citation count: {node.CitationCount}\n'
            doc = doc.replace('-1', 'Unknown')
        
        if add_rel and node.type == 'paper':
            doc += self.get_rel_info(idx, n_rel=n_rel)

        if compact:
            doc = compact_text(doc)
        return doc

    def get_rel_info(self, 
                     idx: int,
                     rel_types: Union[list, None] = None,
                     n_rel: int = -1) -> str:
        """
        Get relation information for the specified node.

        Args:
            idx (int): Index of the node.
            rel_types (Union[list, None]): List of relation types or None if all relation types are included.
            n_rel (int): Number of relations. Default is -1 if all relations are included.

        Returns:
            doc (str): Relation information.
        """
        doc = ''
        rel_types = self.rel_type_lst() if rel_types is None else rel_types
        for edge_t in rel_types:
            node_ids = torch.LongTensor(self.get_neighbor_nodes(idx, edge_t)).tolist()
            if not node_ids:
                continue
            node_type = self.node_types[node_ids[0]]
            str_edge = edge_t.replace('___', ' ')
            doc += f"\n{str_edge}: "
            
            if n_rel > 0 and edge_t == 'paper___cites___paper':
                node_ids = node_ids[torch.randperm(len(node_ids))[:n_rel]].tolist()
            neighbors = []
            for i in node_ids:
                if self[i].type == 'paper':
                    neighbors.append(f'\"{self[i].title}\"')
                elif self[i].type == 'author':
                    if str(self[i].DisplayName) != '-1':
                        institutions = self.get_neighbor_nodes(i, "author___affiliated_with___institution")
                        for inst in institutions:
                            assert self[inst].type == 'institution'
                        str_institutions = [self[j].DisplayName for j in institutions if str(self[j].DisplayName) != '-1']
                        if str_institutions:
                            str_institutions = ', '.join(str_institutions)
                            neighbors.append(f'{self[i].DisplayName} ({str_institutions})')
                        else:
                            neighbors.append(f'{self[i].DisplayName}')
                else:
                    if str(self[i].DisplayName) != '-1':
                        neighbors.append(f'{self[i].DisplayName}')
            neighbors = '(' + ', '.join(neighbors) + '),'
            doc += neighbors
        if doc: 
            doc = '- relations:\n' + doc
        return doc 
    
    def _process_raw(self):
        """
        Process raw data for the MAG dataset.

        Returns:
            processed_data (dict): Processed data.
        """
        NodePropPredDataset(name='ogbn-mag', root=self.raw_data_dir)
        author_data, field_of_study_data, institution_data, paper_data = self.load_meta_data()
        paper_text_data = self.load_english_paper_text(paper_data['mag_id'].tolist())

        print('Processing graph data...')
        author_id_to_mag = {row['id']: row['mag_id'] for _, row in author_data.iterrows()}
        institution_id_to_mag = {row['id']: row['mag_id'] for _, row in institution_data.iterrows()}
        field_of_study_id_to_mag = {row['id']: row['mag_id'] for _, row in field_of_study_data.iterrows()}
        paper_mapping = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "paper_entidx2name.csv.gz"), names=['id', 'mag_id'], skiprows=[0])
        mag_to_paper_id, paper_id_to_mag = self.get_map(paper_mapping)

        unique_paper_id = paper_text_data['mag_id'].unique()
        unique_paper_id = torch.unique(torch.tensor(unique_paper_id))
        node_type_edge = {
            0: 'author___writes___paper', 
            2: 'paper___has_topic___field_of_study', 
            3: 'paper___cites___paper'
        }
        node_type_overlapping_node = {}
        node_type_overlapping_edge = {}

        # # from mag_id to id
        unique_paper_id_list = unique_paper_id.tolist()
        mapping_list = [mag_to_paper_id.get(k, k) for k in tqdm(unique_paper_id_list)]
        unique_paper_id = torch.tensor(mapping_list)

        # load edge data
        print('Start loading edge data...')
        for node_type, paper_rel in node_type_edge.items():
            print(node_type, paper_rel)
            edge, edge_num = self.load_edge(paper_rel)
            # Identify edges connected to target nodes
            if node_type == 3:
                target_array = unique_paper_id.numpy()
                edge_array = edge.numpy()
                mask = np.isin(edge_array[0], target_array) & np.isin(edge_array[1], target_array)
                valid_edges_array = edge_array[:, mask]
                valid_edges_tensor = torch.from_numpy(valid_edges_array)
                node_type_overlapping_node[node_type] = unique_paper_id
                node_type_overlapping_edge[node_type] = valid_edges_tensor
                print(f'{node_type} has {unique_paper_id.shape[0]} nodes left,  and {valid_edges_tensor.t().shape[0]} edges left.')
                continue
            else:
                edge = edge.t()
                connected_edges_list = [] 
                for target_node in tqdm(unique_paper_id):
                    # Find the edges connected to the current target node
                    if node_type == 0:
                        mask = edge[:, 1] == target_node.item()
                        current_connected_edges = edge[mask].clone() 
                    elif node_type == 2:
                        mask = edge[:, 0] == target_node.item()
                        current_connected_edges = edge[mask].clone() 
                    
                    # Collect the other ends of the connected edges
                    connected_edges_list.append(current_connected_edges)
                    del mask
                    del current_connected_edges

                connected_edges = torch.cat(connected_edges_list, dim=0)
                if node_type == 0:
                    other_ends = torch.unique(connected_edges.t()[0])
                elif node_type == 2:
                    other_ends = torch.unique(connected_edges.t()[1])

                node_type_overlapping_node[node_type] = other_ends
                node_type_overlapping_edge[node_type] = connected_edges.t()
                print(f'{node_type} has {other_ends.shape[0]} nodes left,  and {connected_edges.shape[0]} edges left.')

        # specifically choose for institution by author
        edge, edge_num = self.load_edge('author___affiliated_with___institution')
        edge = edge.t()
        connected_edges_list = []
        for target_node in node_type_overlapping_node[0]:
            mask = edge[:, 0] == target_node
            current_connected_edges = edge[mask].clone()
            # Collect the other ends of the connected edges
            connected_edges_list.append(current_connected_edges)

        connected_edges = torch.cat(connected_edges_list, dim=0)
        other_ends = torch.unique(connected_edges.t()[1])

        node_type_overlapping_node[1] = other_ends
        node_type_overlapping_edge[1] = connected_edges.t()
        print(f'1 has {other_ends.shape[0]} nodes left,  and {connected_edges.shape[0]} edges left.')

        # save shared nodes in node_type_overlapping_node and shared edges in node_type_overlapping_edge
        tot_n = sum([len(node_type_overlapping_node[i]) for i in range(4)])

        # the order of re-indexing is author, institution, field_of_study, paper
        domain_mappings = {
            0: author_id_to_mag, 
            1: institution_id_to_mag, 
            2: field_of_study_id_to_mag, 
            3: paper_id_to_mag
        }
        new_domain_mappings = {}
        domain_old_to_new = {}
        id_to_mag = {}
        offset = 0
        node_type_overlapping_node_sort = {k: node_type_overlapping_node[k] for k in sorted(node_type_overlapping_node.keys())}

        # start to re-index 
        print('Start re-indexing...')
        for i, remain_node in node_type_overlapping_node_sort.items():
            old_to_new_mappings = {key: id + offset for id, key in enumerate(remain_node.tolist())}
            updated_dict = {value: domain_mappings[i][key] for key, value in old_to_new_mappings.items()}
            print(f'{i} has {len(updated_dict)} nodes left')
            domain_old_to_new[i] = old_to_new_mappings
            id_to_mag.update(updated_dict)
            new_domain_mappings[i] = updated_dict
            offset += len(node_type_overlapping_node[i])

        # check last index equals tot_n
        assert offset == tot_n
        edges_full = torch.cat([node_type_overlapping_edge[i] for i in range(4)], dim=1)

        # re-index edges 
        # Different types of nodes all start from 0, need to re-index according to types
        d_of_mapping_dict = {
            0: [domain_old_to_new[0], domain_old_to_new[3]], 
            1: [domain_old_to_new[0], domain_old_to_new[1]], 
            2: [domain_old_to_new[3], domain_old_to_new[2]], 
            3: [domain_old_to_new[3], domain_old_to_new[3]]
        }

        for i, remain_edge in tqdm(node_type_overlapping_edge.items()):
            edges = remain_edge[:2]
            edge_types = remain_edge[2]
            new_edges = edges.clone()
            dict1 = d_of_mapping_dict[i][0]
            dict2 = d_of_mapping_dict[i][1]

            # Update the first dimension using dict1
            for old, new in dict1.items():
                new_edges[0, edges[0] == old] = new

            # Update the second dimension using dict2
            for old, new in dict2.items():
                new_edges[1, edges[1] == old] = new

            final_edges = torch.cat([new_edges, edge_types.unsqueeze(0)], dim=0)
            node_type_overlapping_edge[i] = final_edges

        edges_final = torch.cat([node_type_overlapping_edge[i] for i in range(4)], dim=1)
        assert edges_final.shape == edges_full.shape
        edge_index = torch.LongTensor(edges_final[:2])
        edge_types = torch.LongTensor(edges_final[2])

        # re-index nodes
        author_data['new_id'] = author_data['id'].map(domain_old_to_new[0])
        author_data.dropna(subset=['new_id'], inplace=True)
        author_data['new_id'] = author_data['new_id'].astype(int)
        institution_data['new_id'] = institution_data['id'].map(domain_old_to_new[1])
        institution_data.dropna(subset=['new_id'], inplace=True)
        institution_data['new_id'] = institution_data['new_id'].astype(int)
        field_of_study_data['new_id'] = field_of_study_data['id'].map(domain_old_to_new[2])
        field_of_study_data.dropna(subset=['new_id'], inplace=True)
        field_of_study_data['new_id'] = field_of_study_data['new_id'].astype(int)
        paper_data['new_id'] = paper_data['id'].map(domain_old_to_new[3])
        paper_data.dropna(subset=['new_id'], inplace=True)
        paper_data['new_id'] = paper_data['new_id'].astype(int)

        # add text data onto the graph (paper nodes)
        merged_df = pd.merge(paper_data, paper_text_data, on='mag_id', how='outer')
        merged_df.dropna(subset=['new_id'], inplace=True)
        merged_df['new_id'] = merged_df['new_id'].astype(int)
        merged_df['mag_id'] = merged_df['mag_id'].astype(int)
        merged_df = merged_df.drop_duplicates(subset=['new_id'])

        # record node_info into dict
        node_frame = {0: author_data, 1: institution_data, 2: field_of_study_data, 3: merged_df}
        node_info = {}
        node_types = []
        for node_type, frame in tqdm(node_frame.items()):
            for idx, row in frame.iterrows():
                # csv_row to dict
                node_info[row['new_id']] = row.to_dict()
                node_types.append(node_type)
        node_types = torch.tensor(node_types)
        if len(node_types) != tot_n:
            raise ValueError('node_types length does not match tot_n')

        processed_data = {
            'node_info': node_info, 
            'edge_index': edge_index, 
            'edge_types': edge_types,
            'node_types': node_types
        }

        print('Start saving processed data...')
        save_files(save_path=self.processed_data_dir, **processed_data)

        return processed_data