File size: 29,695 Bytes
7bf4b88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
import json
import os
import os.path as osp
import zipfile
import numpy as np
import pandas as pd
import torch
from huggingface_hub import hf_hub_download
from langdetect import detect
from ogb.nodeproppred import NodePropPredDataset
from ogb.utils.url import download_url, extract_zip
from tqdm import tqdm
from typing import Union
from stark_qa.skb.knowledge_base import SKB
from stark_qa.tools.download_hf import download_hf_file, download_hf_folder
from stark_qa.tools.io import load_files, save_files
from stark_qa.tools.process_text import compact_text
DATASET = {
"repo": "snap-stanford/stark",
'metadata': 'skb/mag/schema',
'raw': 'skb/mag/idx_title_abs.zip',
'processed': 'skb/mag/processed.zip'
}
RAW_DATA = {
'ogbn_papers100M': 'https://snap.stanford.edu/ogb/data/misc/ogbn_papers100M/paperinfo.zip',
'mag_mapping': 'https://zenodo.org/records/2628216/files'
}
class MagSKB(SKB):
test_columns = ['title', 'abstract', 'text']
candidate_types = ['paper']
node_type_dict = {0: 'author', 1: 'institution', 2: 'field_of_study', 3: 'paper'}
edge_type_dict = {
0: 'author___affiliated_with___institution',
1: 'paper___cites___paper',
2: 'paper___has_topic___field_of_study',
3: 'author___writes___paper'
}
node_attr_dict = {
'paper': ['title', 'abstract', 'publication date', 'venue'],
'author': ['name'],
'institution': ['name'],
'field_of_study': ['name']
}
def __init__(self,
root: Union[str, None] = None,
download_processed: bool = True,
**kwargs):
"""
Initialize the MagSKB class.
Args:
root (Union[str, None]): Root directory to store the dataset. If None, default HF cache paths will be used.
download_processed (bool): Whether to download the processed data.
"""
self.root = root
if download_processed:
if (self.root is None) or (self.root is not None and not osp.exists(osp.join(self.root, 'processed', 'node_info.pkl'))):
processed_path = hf_hub_download(
DATASET["repo"], DATASET["processed"], repo_type="dataset"
)
if self.root is None:
self.root = osp.dirname(processed_path)
if not osp.exists(osp.join(self.root, 'processed', 'node_info.pkl')):
with zipfile.ZipFile(processed_path, "r") as zip_ref:
zip_ref.extractall(self.root)
print(f"Extracting downloaded processed data to {self.root}")
self.raw_data_dir = osp.join(self.root, 'raw')
self.processed_data_dir = osp.join(self.root, 'processed')
self.graph_data_root = osp.join(self.raw_data_dir, 'ogbn_mag')
self.text_root = osp.join(self.raw_data_dir, 'ogbn_papers100M')
# existing dirs/files
self.schema_dir = osp.join(self.root, 'schema')
if not osp.exists(self.schema_dir):
download_hf_folder(
DATASET["repo"], DATASET["metadata"],
repo_type="dataset", save_as_folder=self.schema_dir
)
self.mag_mapping_dir = osp.join(self.graph_data_root, 'mag_mapping')
self.ogbn_mag_mapping_dir = osp.join(self.graph_data_root, 'mapping')
self.title_path = osp.join(self.text_root, 'paperinfo/idx_title.tsv')
self.abstract_path = osp.join(self.text_root, 'paperinfo/idx_abs.tsv')
# new files
self.mag_metadata_cache_dir = osp.join(self.processed_data_dir, 'mag_cache')
self.paper100M_text_cache_dir = osp.join(self.processed_data_dir, 'paper100M_cache')
self.merged_filtered_path = osp.join(self.paper100M_text_cache_dir, 'idx_title_abs.tsv')
os.makedirs(self.mag_metadata_cache_dir, exist_ok=True)
os.makedirs(self.paper100M_text_cache_dir, exist_ok=True)
if osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
print(f'Loading from {self.processed_data_dir}!')
processed_data = load_files(self.processed_data_dir)
else:
print('Start processing raw data...')
processed_data = self._process_raw()
processed_data.update({
'node_type_dict': self.node_type_dict,
'edge_type_dict': self.edge_type_dict
})
super(MagSKB, self).__init__(**processed_data, **kwargs)
def load_edge(self, edge_type: str) -> tuple:
"""
Load edge data for the specified edge type.
Args:
edge_type (str): Type of edge to load.
Returns:
tuple: A tuple containing edge tensor and edge numbers.
"""
edge_dir = osp.join(self.graph_data_root, f"raw/relations/{edge_type}/edge.csv.gz")
edge_type_dir = osp.join(self.graph_data_root, f"raw/relations/{edge_type}/edge_reltype.csv.gz")
num_dir = osp.join(self.graph_data_root, f"raw/relations/{edge_type}/num-edge-list.csv.gz")
edge = pd.read_csv(edge_dir, names=['src', 'dst'])
edge_t = pd.read_csv(edge_type_dir, names=['type'])
edge_n = pd.read_csv(num_dir, names=['num'])
edge_num = edge_n['num'].tolist()
edge = [edge['src'].tolist(), edge['dst'].tolist(), edge_t['type'].tolist()]
edge = torch.LongTensor(edge)
return edge, edge_num
def load_meta_data(self):
"""
Load metadata for the MAG dataset.
Returns:
tuple: DataFrames for authors, fields of study, institutions, and papers.
"""
mag_csv = {}
if osp.exists(osp.join(self.mag_metadata_cache_dir, 'paper_data.csv')):
print('Start loading MAG data from cache...')
for t in ['author', 'institution', 'field_of_study', 'paper']:
mag_csv[t] = pd.read_csv(osp.join(self.mag_metadata_cache_dir, f'{t}_data.csv'))
author_data, paper_data = mag_csv['author'], mag_csv['paper']
field_of_study_data = mag_csv['field_of_study']
institution_data = mag_csv['institution']
print('Done!')
else:
print('Start loading MAG data, it might take a while...')
full_attr_path = osp.join(self.schema_dir, 'mag.json')
reduced_attr_path = osp.join(self.schema_dir, 'reduced_mag.json')
full_attr = json.load(open(full_attr_path, 'r'))
reduced_attr = json.load(open(reduced_attr_path, 'r'))
loaded_csv = {}
for key in reduced_attr.keys():
column_nums = [full_attr[key].index(i) for i in reduced_attr[key]]
file = osp.join(self.mag_mapping_dir, key + '.txt.gz')
if not osp.exists(file):
try:
download_url(f'{RAW_DATA["mag_mapping"]}/{key}.txt.gz', self.mag_mapping_dir)
except Exception as error:
print(f'Download failed or {key} data not found, please download from {RAW_DATA["mag_mapping"]} to {file}')
raise error
loaded_csv[key] = pd.read_csv(file, header=None, sep='\t', usecols=column_nums)
loaded_csv[key].columns = reduced_attr[key]
print('Processing and merging meta data...')
author_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "author_entidx2name.csv.gz"), names=['id', 'AuthorId'], skiprows=[0])
field_of_study_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "field_of_study_entidx2name.csv.gz"), names=['id', 'FieldOfStudyId'], skiprows=[0])
institution_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "institution_entidx2name.csv.gz"), names=['id', 'AffiliationId'], skiprows=[0])
paper_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "paper_entidx2name.csv.gz"), names=['id', 'PaperId'], skiprows=[0])
loaded_csv['Papers'].rename(columns={'JournalId ': 'JournalId', 'Rank': 'PaperRank', 'CitationCount': 'PaperCitationCount'}, inplace=True)
loaded_csv['Journals'].rename(columns={'DisplayName': 'JournalDisplayName', 'Rank': 'JournalRank', 'CitationCount': 'JournalCitationCount', 'PaperCount': 'JournalPaperCount'}, inplace=True)
loaded_csv['ConferenceSeries'].rename(columns={'DisplayName': 'ConferenceSeriesDisplayName', 'Rank': 'ConferenceSeriesRank', 'CitationCount': 'ConferenceSeriesCitationCount', 'PaperCount': 'ConferenceSeriesPaperCount'}, inplace=True)
loaded_csv['ConferenceInstances'].rename(columns={'DisplayName': 'ConferenceInstancesDisplayName', 'CitationCount': 'ConferenceInstanceCitationCount', 'PaperCount': 'ConferenceInstancesPaperCount'}, inplace=True)
author_data = author_data.merge(loaded_csv['Authors'], on='AuthorId', how='left')
field_of_study_data = field_of_study_data.merge(loaded_csv['FieldsOfStudy'], on='FieldOfStudyId', how='left')
institution_data = institution_data.merge(loaded_csv['Affiliations'], on='AffiliationId', how='left')
paper_data = paper_data.merge(loaded_csv['Papers'], on='PaperId', how='left')
paper_data['JournalId'] = paper_data['JournalId'].apply(lambda x: float(x)).apply(lambda x: -1 if np.isnan(x) else int(x))
paper_data = paper_data.merge(loaded_csv['Journals'], on='JournalId', how='left')
paper_data = paper_data.merge(loaded_csv['ConferenceSeries'], on='ConferenceSeriesId', how='left')
paper_data['ConferenceInstanceId'] = paper_data['ConferenceInstanceId'].apply(lambda x: float(x)).apply(lambda x: -1 if np.isnan(x) else int(x))
paper_data = paper_data.merge(loaded_csv['ConferenceInstances'], on='ConferenceInstanceId', how='left')
for csv_data in [author_data, field_of_study_data, institution_data, paper_data]:
csv_data.columns = csv_data.columns.str.strip()
for col in csv_data.columns:
csv_data[col] = csv_data[col].apply(lambda x: -1 if isinstance(x, float) and np.isnan(x) else x)
if 'rank' in col.lower() or 'count' in col.lower() or 'level' in col.lower() or 'year' in col.lower() or col.lower().endswith('id'):
csv_data[col] = csv_data[col].apply(lambda x: int(x) if isinstance(x, float) else x)
mag_csv = {
'author': author_data,
'institution': institution_data,
'field_of_study': field_of_study_data,
'paper': paper_data
}
for t in ['author', 'institution', 'field_of_study', 'paper']:
mag_csv[t].to_csv(osp.join(self.mag_metadata_cache_dir, f'{t}_data.csv'), index=False)
author_data, paper_data = mag_csv['author'], mag_csv['paper']
field_of_study_data = mag_csv['field_of_study']
institution_data = mag_csv['institution']
# create init_id to mag_id mapping
author_data['type'] = 'author'
author_data.rename(columns={'id': 'id', 'AuthorId': 'mag_id'}, inplace=True)
institution_data['type'] = 'institution'
institution_data.rename(columns={'id': 'id', 'AffiliationId': 'mag_id'}, inplace=True)
field_of_study_data['type'] = 'field_of_study'
field_of_study_data.rename(columns={'id': 'id', 'FieldOfStudyId': 'mag_id'}, inplace=True)
paper_data['type'] = 'paper'
paper_data.rename(columns={'id': 'id', 'PaperId': 'mag_id'}, inplace=True)
return author_data, field_of_study_data, institution_data, paper_data
def load_english_paper_text(self,
mag_ids: list,
download_cache: bool = True) -> pd.DataFrame:
"""
Load English text data for the papers.
Args:
mag_ids (list): List of MAG IDs for the papers.
download_cache (bool): Whether to download cached data.
Returns:
DataFrame: DataFrame containing English titles and abstracts.
"""
def is_english(text):
try:
return detect(text) == 'en'
except:
return False
if not osp.exists(self.merged_filtered_path):
if download_cache:
merged_filtered_zip_path = self.merged_filtered_path.replace('tsv', 'zip')
download_hf_file(
DATASET["repo"], DATASET["raw"],
repo_type="dataset", save_as_file=merged_filtered_zip_path
)
extract_zip(merged_filtered_zip_path, osp.dirname(self.merged_filtered_path))
else:
if not osp.exists(self.title_path):
raw_text_path = download_url(RAW_DATA['ogbn_papers100M'], self.text_root)
extract_zip(raw_text_path, self.text_root)
print('Start reading title...')
title = pd.read_csv(self.title_path, sep='\t', header=None)
title.columns = ["mag_id", "title"]
print('Filtering titles in English...')
# filter the titles that are in mag_ids
title = title[title['mag_id'].apply(lambda x: x in mag_ids)]
title_en = title[title['title'].apply(is_english)]
print('Start reading abstract...')
abstract = pd.read_csv(self.abstract_path, sep='\t', header=None)
abstract.columns = ["mag_id", "abstract"]
print('Filtering abstracts in English...')
abstract = abstract[abstract['mag_id'].apply(lambda x: x in mag_ids)]
abstract_en = abstract[abstract['abstract'].apply(is_english)]
print('Start merging titles and abstracts...')
title_abs_en = pd.merge(title, abstract, how="outer", on="mag_id", sort=True)
title_abs_en.to_csv(self.merged_filtered_path, sep="\t", header=True, index=False)
print('Loading merged and filtered titles and abstracts (English)...')
title_abs_en = pd.read_csv(self.merged_filtered_path, sep='\t')
title_abs_en.columns = ['mag_id', 'title', 'abstract']
print('Done!')
return title_abs_en
def get_map(self, df):
"""
Create mappings between MAG IDs and internal IDs.
Args:
df (DataFrame): DataFrame containing MAG IDs.
Returns:
tuple: Mappings from MAG IDs to internal IDs and vice versa.
"""
mag2id, id2mag = {}, {}
for idx in range(len(df)):
mag2id[df['mag_id'][idx]] = idx
id2mag[idx] = df['mag_id'][idx]
return mag2id, id2mag
def get_doc_info(self,
idx : int,
compact: bool = False,
add_rel: bool = False,
n_rel: int = -1) -> str:
"""
Get document information for the specified node.
Args:
idx (int): Index of the node.
compact (bool): Whether to compact the text.
add_rel (bool): Whether to add relation information.
n_rel (int): Number of relations to add. Default is -1 if all relations are included.
Returns:
str: Document information.
"""
node = self[idx]
if node.type == 'author':
doc = f'- author name: {node.DisplayName}\n'
if node.PaperCount != -1:
doc += f'- author paper count: {node.PaperCount}\n'
if node.CitationCount != -1:
doc += f'- author citation count: {node.CitationCount}\n'
doc = doc.replace('-1', 'Unknown')
elif node.type == 'paper':
doc = f' - paper title: {node.title}\n'
doc += ' - abstract: ' + node.abstract.replace('\r', '').rstrip('\n') + '\n'
if str(node.Date) != '-1':
doc += f' - publication date: {node.Date}\n'
if str(node.OriginalVenue) != '-1':
doc += f' - venue: {node.OriginalVenue}\n'
elif str(node.JournalDisplayName) != '-1':
doc += f' - journal: {node.JournalDisplayName}\n'
elif str(node.ConferenceSeriesDisplayName) != '-1':
doc += f' - conference: {node.ConferenceSeriesDisplayName}\n'
elif str(node.ConferenceInstancesDisplayName) != '-1':
doc += f' - conference: {node.ConferenceInstancesDisplayName}\n'
elif node.type == 'field_of_study':
doc = f' - field of study: {node.DisplayName}\n'
if node.PaperCount != -1:
doc += f'- field paper count: {node.PaperCount}\n'
if node.CitationCount != -1:
doc += f'- field citation count: {node.CitationCount}\n'
doc = doc.replace('-1', 'Unknown')
elif node.type == 'institution':
doc = f' - institution: {node.DisplayName}\n'
if node.PaperCount != -1:
doc += f'- institution paper count: {node.PaperCount}\n'
if node.CitationCount != -1:
doc += f'- institution citation count: {node.CitationCount}\n'
doc = doc.replace('-1', 'Unknown')
if add_rel and node.type == 'paper':
doc += self.get_rel_info(idx, n_rel=n_rel)
if compact:
doc = compact_text(doc)
return doc
def get_rel_info(self,
idx: int,
rel_types: Union[list, None] = None,
n_rel: int = -1) -> str:
"""
Get relation information for the specified node.
Args:
idx (int): Index of the node.
rel_types (Union[list, None]): List of relation types or None if all relation types are included.
n_rel (int): Number of relations. Default is -1 if all relations are included.
Returns:
doc (str): Relation information.
"""
doc = ''
rel_types = self.rel_type_lst() if rel_types is None else rel_types
for edge_t in rel_types:
node_ids = torch.LongTensor(self.get_neighbor_nodes(idx, edge_t)).tolist()
if not node_ids:
continue
node_type = self.node_types[node_ids[0]]
str_edge = edge_t.replace('___', ' ')
doc += f"\n{str_edge}: "
if n_rel > 0 and edge_t == 'paper___cites___paper':
node_ids = node_ids[torch.randperm(len(node_ids))[:n_rel]].tolist()
neighbors = []
for i in node_ids:
if self[i].type == 'paper':
neighbors.append(f'\"{self[i].title}\"')
elif self[i].type == 'author':
if str(self[i].DisplayName) != '-1':
institutions = self.get_neighbor_nodes(i, "author___affiliated_with___institution")
for inst in institutions:
assert self[inst].type == 'institution'
str_institutions = [self[j].DisplayName for j in institutions if str(self[j].DisplayName) != '-1']
if str_institutions:
str_institutions = ', '.join(str_institutions)
neighbors.append(f'{self[i].DisplayName} ({str_institutions})')
else:
neighbors.append(f'{self[i].DisplayName}')
else:
if str(self[i].DisplayName) != '-1':
neighbors.append(f'{self[i].DisplayName}')
neighbors = '(' + ', '.join(neighbors) + '),'
doc += neighbors
if doc:
doc = '- relations:\n' + doc
return doc
def _process_raw(self):
"""
Process raw data for the MAG dataset.
Returns:
processed_data (dict): Processed data.
"""
NodePropPredDataset(name='ogbn-mag', root=self.raw_data_dir)
author_data, field_of_study_data, institution_data, paper_data = self.load_meta_data()
paper_text_data = self.load_english_paper_text(paper_data['mag_id'].tolist())
print('Processing graph data...')
author_id_to_mag = {row['id']: row['mag_id'] for _, row in author_data.iterrows()}
institution_id_to_mag = {row['id']: row['mag_id'] for _, row in institution_data.iterrows()}
field_of_study_id_to_mag = {row['id']: row['mag_id'] for _, row in field_of_study_data.iterrows()}
paper_mapping = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, "paper_entidx2name.csv.gz"), names=['id', 'mag_id'], skiprows=[0])
mag_to_paper_id, paper_id_to_mag = self.get_map(paper_mapping)
unique_paper_id = paper_text_data['mag_id'].unique()
unique_paper_id = torch.unique(torch.tensor(unique_paper_id))
node_type_edge = {
0: 'author___writes___paper',
2: 'paper___has_topic___field_of_study',
3: 'paper___cites___paper'
}
node_type_overlapping_node = {}
node_type_overlapping_edge = {}
# # from mag_id to id
unique_paper_id_list = unique_paper_id.tolist()
mapping_list = [mag_to_paper_id.get(k, k) for k in tqdm(unique_paper_id_list)]
unique_paper_id = torch.tensor(mapping_list)
# load edge data
print('Start loading edge data...')
for node_type, paper_rel in node_type_edge.items():
print(node_type, paper_rel)
edge, edge_num = self.load_edge(paper_rel)
# Identify edges connected to target nodes
if node_type == 3:
target_array = unique_paper_id.numpy()
edge_array = edge.numpy()
mask = np.isin(edge_array[0], target_array) & np.isin(edge_array[1], target_array)
valid_edges_array = edge_array[:, mask]
valid_edges_tensor = torch.from_numpy(valid_edges_array)
node_type_overlapping_node[node_type] = unique_paper_id
node_type_overlapping_edge[node_type] = valid_edges_tensor
print(f'{node_type} has {unique_paper_id.shape[0]} nodes left, and {valid_edges_tensor.t().shape[0]} edges left.')
continue
else:
edge = edge.t()
connected_edges_list = []
for target_node in tqdm(unique_paper_id):
# Find the edges connected to the current target node
if node_type == 0:
mask = edge[:, 1] == target_node.item()
current_connected_edges = edge[mask].clone()
elif node_type == 2:
mask = edge[:, 0] == target_node.item()
current_connected_edges = edge[mask].clone()
# Collect the other ends of the connected edges
connected_edges_list.append(current_connected_edges)
del mask
del current_connected_edges
connected_edges = torch.cat(connected_edges_list, dim=0)
if node_type == 0:
other_ends = torch.unique(connected_edges.t()[0])
elif node_type == 2:
other_ends = torch.unique(connected_edges.t()[1])
node_type_overlapping_node[node_type] = other_ends
node_type_overlapping_edge[node_type] = connected_edges.t()
print(f'{node_type} has {other_ends.shape[0]} nodes left, and {connected_edges.shape[0]} edges left.')
# specifically choose for institution by author
edge, edge_num = self.load_edge('author___affiliated_with___institution')
edge = edge.t()
connected_edges_list = []
for target_node in node_type_overlapping_node[0]:
mask = edge[:, 0] == target_node
current_connected_edges = edge[mask].clone()
# Collect the other ends of the connected edges
connected_edges_list.append(current_connected_edges)
connected_edges = torch.cat(connected_edges_list, dim=0)
other_ends = torch.unique(connected_edges.t()[1])
node_type_overlapping_node[1] = other_ends
node_type_overlapping_edge[1] = connected_edges.t()
print(f'1 has {other_ends.shape[0]} nodes left, and {connected_edges.shape[0]} edges left.')
# save shared nodes in node_type_overlapping_node and shared edges in node_type_overlapping_edge
tot_n = sum([len(node_type_overlapping_node[i]) for i in range(4)])
# the order of re-indexing is author, institution, field_of_study, paper
domain_mappings = {
0: author_id_to_mag,
1: institution_id_to_mag,
2: field_of_study_id_to_mag,
3: paper_id_to_mag
}
new_domain_mappings = {}
domain_old_to_new = {}
id_to_mag = {}
offset = 0
node_type_overlapping_node_sort = {k: node_type_overlapping_node[k] for k in sorted(node_type_overlapping_node.keys())}
# start to re-index
print('Start re-indexing...')
for i, remain_node in node_type_overlapping_node_sort.items():
old_to_new_mappings = {key: id + offset for id, key in enumerate(remain_node.tolist())}
updated_dict = {value: domain_mappings[i][key] for key, value in old_to_new_mappings.items()}
print(f'{i} has {len(updated_dict)} nodes left')
domain_old_to_new[i] = old_to_new_mappings
id_to_mag.update(updated_dict)
new_domain_mappings[i] = updated_dict
offset += len(node_type_overlapping_node[i])
# check last index equals tot_n
assert offset == tot_n
edges_full = torch.cat([node_type_overlapping_edge[i] for i in range(4)], dim=1)
# re-index edges
# Different types of nodes all start from 0, need to re-index according to types
d_of_mapping_dict = {
0: [domain_old_to_new[0], domain_old_to_new[3]],
1: [domain_old_to_new[0], domain_old_to_new[1]],
2: [domain_old_to_new[3], domain_old_to_new[2]],
3: [domain_old_to_new[3], domain_old_to_new[3]]
}
for i, remain_edge in tqdm(node_type_overlapping_edge.items()):
edges = remain_edge[:2]
edge_types = remain_edge[2]
new_edges = edges.clone()
dict1 = d_of_mapping_dict[i][0]
dict2 = d_of_mapping_dict[i][1]
# Update the first dimension using dict1
for old, new in dict1.items():
new_edges[0, edges[0] == old] = new
# Update the second dimension using dict2
for old, new in dict2.items():
new_edges[1, edges[1] == old] = new
final_edges = torch.cat([new_edges, edge_types.unsqueeze(0)], dim=0)
node_type_overlapping_edge[i] = final_edges
edges_final = torch.cat([node_type_overlapping_edge[i] for i in range(4)], dim=1)
assert edges_final.shape == edges_full.shape
edge_index = torch.LongTensor(edges_final[:2])
edge_types = torch.LongTensor(edges_final[2])
# re-index nodes
author_data['new_id'] = author_data['id'].map(domain_old_to_new[0])
author_data.dropna(subset=['new_id'], inplace=True)
author_data['new_id'] = author_data['new_id'].astype(int)
institution_data['new_id'] = institution_data['id'].map(domain_old_to_new[1])
institution_data.dropna(subset=['new_id'], inplace=True)
institution_data['new_id'] = institution_data['new_id'].astype(int)
field_of_study_data['new_id'] = field_of_study_data['id'].map(domain_old_to_new[2])
field_of_study_data.dropna(subset=['new_id'], inplace=True)
field_of_study_data['new_id'] = field_of_study_data['new_id'].astype(int)
paper_data['new_id'] = paper_data['id'].map(domain_old_to_new[3])
paper_data.dropna(subset=['new_id'], inplace=True)
paper_data['new_id'] = paper_data['new_id'].astype(int)
# add text data onto the graph (paper nodes)
merged_df = pd.merge(paper_data, paper_text_data, on='mag_id', how='outer')
merged_df.dropna(subset=['new_id'], inplace=True)
merged_df['new_id'] = merged_df['new_id'].astype(int)
merged_df['mag_id'] = merged_df['mag_id'].astype(int)
merged_df = merged_df.drop_duplicates(subset=['new_id'])
# record node_info into dict
node_frame = {0: author_data, 1: institution_data, 2: field_of_study_data, 3: merged_df}
node_info = {}
node_types = []
for node_type, frame in tqdm(node_frame.items()):
for idx, row in frame.iterrows():
# csv_row to dict
node_info[row['new_id']] = row.to_dict()
node_types.append(node_type)
node_types = torch.tensor(node_types)
if len(node_types) != tot_n:
raise ValueError('node_types length does not match tot_n')
processed_data = {
'node_info': node_info,
'edge_index': edge_index,
'edge_types': edge_types,
'node_types': node_types
}
print('Start saving processed data...')
save_files(save_path=self.processed_data_dir, **processed_data)
return processed_data
|